Elementary Algebra
17th Edition
ISBN: 9780998625713
Author: Lynn Marecek, MaryAnne Anthony-Smith
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7.3, Problem 181E
In the following exercises, factor.
181.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How long is a guy wire reaching from the top of a
15-foot pole to a point on the ground
9-feet from the pole?
Question content area bottom
Part 1
The guy wire is exactly
feet long.
(Type an exact answer, using radicals as needed.)
Part 2
The guy wire is approximatelyfeet long.
(Round to the nearest thousandth.)
Question 6
Not yet
answered
Marked out of
5.00
Flag question
=
If (4,6,-11) and (-12,-16,4),
=
Compute the cross product vx w
k
Consider the following vector field v^-> (x,y):
v^->(x,y)=2yi−xj
What is the magnitude of the vector v⃗ located in point (13,9)?
[Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places]
Chapter 7 Solutions
Elementary Algebra
Ch. 7.1 - Find the GCF of 48 and 80.Ch. 7.1 - Find the GCF of 18 and 40.Ch. 7.1 - Find the GCF: 12x2,18x3 .Ch. 7.1 - Find the GCF: 12y2,24y3 .Ch. 7.1 - Find the GCF: 6ab4,8a2b .Ch. 7.1 - Find the GCF: 9m5n2,12m3n .Ch. 7.1 - Find the greatest common factor: 25m4,35m3,20m2 .Ch. 7.1 - Find the greatest common factor: 14x3,70x2,105x .Ch. 7.1 - Factor: 6a+24 .Ch. 7.1 - Factor: 2b+14 .
Ch. 7.1 - Factor: 14x+14 .Ch. 7.1 - Factor: 12p+12 .Ch. 7.1 - Factor: 18u36 .Ch. 7.1 - Factor: 30y60 .Ch. 7.1 - Factor: 5x225x+15 .Ch. 7.1 - Factor: 3y212y+27 .Ch. 7.1 - Factor: 2x3+12x2 .Ch. 7.1 - Factor: 6y315y2 .Ch. 7.1 - Factor: 20x310x2+14x .Ch. 7.1 - Factor: 24y312y220y .Ch. 7.1 - Factor: 9xy2+6x2y2+21y3 .Ch. 7.1 - Factor: 3p36p2q+9pq3 .Ch. 7.1 - Factor: 16z64 .Ch. 7.1 - Factor: 9y27 .Ch. 7.1 - Factor: 4b2+16b .Ch. 7.1 - Factor: 7a2+21a .Ch. 7.1 - Factor: 4m(m+3)7(m+3) .Ch. 7.1 - Factor: 8n(n4)+5(n4) .Ch. 7.1 - Factor: xy+8y+3x+24 .Ch. 7.1 - Factor: ab+7b+8a+56 .Ch. 7.1 - Factor: x2+2x5x10 .Ch. 7.1 - Factor: y2+4y7y28 .Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, find the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor the greatest...Ch. 7.1 - In the following exercises, factor by grouping....Ch. 7.1 - In the following exercises, factor by grouping....Ch. 7.1 - In the following exercises, factor by grouping....Ch. 7.1 - In the following exercises, factor by grouping....Ch. 7.1 - In the following exercises, factor by grouping....Ch. 7.1 - In the following exercises, factor by grouping....Ch. 7.1 - In the following exercises, factor by grouping....Ch. 7.1 - In the following exercises, factor by grouping....Ch. 7.1 - In the following exercises, factor. 53. 20x10Ch. 7.1 - In the following exercises, factor. 54. 5x3x2+xCh. 7.1 - In the following exercises, factor. 55....Ch. 7.1 - In the following exercises, factor. 56. x3+x2x1Ch. 7.1 - In the following exercises, factor. 57....Ch. 7.1 - In the following exercises, factor. 58. 5x33x25x3Ch. 7.1 - Area of a rectangle The area of a rectangle with...Ch. 7.1 - Height of a baseball The height of a baseball t...Ch. 7.1 - The greatest common factor of 36 and 60 is 12....Ch. 7.1 - What is the GCF of y4,y5 , and y10 ? Write a...Ch. 7.2 - Factor: x2+6x+8 .Ch. 7.2 - Factor: y2+8y+15 .Ch. 7.2 - Factor: q2+10q+24 .Ch. 7.2 - Factor: t2+14t+24 .Ch. 7.2 - Factor: x2+19x+60 .Ch. 7.2 - Factor: v2+23v+60 .Ch. 7.2 - Factor: u29u+18 .Ch. 7.2 - Factor: y216y+63 .Ch. 7.2 - Factor: h2+4h12 .Ch. 7.2 - Factor: k2+k20 .Ch. 7.2 - Factor: x24x12 .Ch. 7.2 - Factor: y2y20 .Ch. 7.2 - Factor: r23r40 .Ch. 7.2 - Factor: s23s10 .Ch. 7.2 - Factor: m2+4m+18 .Ch. 7.2 - Factor: n210n+12 .Ch. 7.2 - Factor: 9m+m2+18 .Ch. 7.2 - Factor: 7n+12+n2 .Ch. 7.2 - Factor: u2+11uv+28v2 .Ch. 7.2 - Factor: x2+13xy+42y2 .Ch. 7.2 - Factor: a211ab+10b2 .Ch. 7.2 - Factor: m213mn+12n2 .Ch. 7.2 - Factor: x27xy10y2 .Ch. 7.2 - Factor: p2+15pq+20q2 .Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each trinomial...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - the following exercises, factor each expression....Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - the following exercises, factor each expression....Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - In the following exercises, factor each...Ch. 7.2 - Consecutive integers Deirdre is thinking of two...Ch. 7.2 - Consecutive integers Deshawn is thinking of two...Ch. 7.2 - Many trinomials of the form x2+bx+c factor into...Ch. 7.2 - How do you determine whether to use plus or minus...Ch. 7.2 - Will factored x2x20 as (x+5)(x4) . Bill factored...Ch. 7.2 - Look at Example 7.19, where we factored y2+17y+60...Ch. 7.3 - Identify the best method to use to factor each...Ch. 7.3 - Identify the best method to use to factor each...Ch. 7.3 - Factor completely: 4m24m8 .Ch. 7.3 - Factor completely: 5k215k50 .Ch. 7.3 - Factor completely: 3r29r+6 .Ch. 7.3 - Factor completely: 2t210t+12 .Ch. 7.3 - Factor completely: 5x3+15x220x .Ch. 7.3 - Factor completely: 6y3+18y260y .Ch. 7.3 - Factor completely: 2a2+5a+3 .Ch. 7.3 - Factor completely: 4b2+5b+1 .Ch. 7.3 - Factor completely: 8x213x+3 .Ch. 7.3 - Factor completely: 10y237+7 .Ch. 7.3 - Factor completely: 8a23a5 .Ch. 7.3 - Factor completely: 6b2b15 .Ch. 7.3 - Factor completely: 18x23x10 .Ch. 7.3 - Factor completely: 30y253y21 .Ch. 7.3 - Factor completely: 15n285n2+100n .Ch. 7.3 - Factor completely: 56q3+320q296q .Ch. 7.3 - Factor: 6x2+13x+2 .Ch. 7.3 - Factor: 4y2+8y+3 .Ch. 7.3 - Factor: 20h2+13h15 .Ch. 7.3 - Factor: 6g2+19g20 .Ch. 7.3 - Factor: 10t2+19t15 .Ch. 7.3 - Factor: 3u2+8u+5 .Ch. 7.3 - Factor: 16x232x+12 .Ch. 7.3 - Factor: 18w239w+18 .Ch. 7.3 - In the following exercises, identify the best...Ch. 7.3 - In the following exercises, identify the best...Ch. 7.3 - In the following exercises, identify the best...Ch. 7.3 - In the following exercises, identify the best...Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor completely....Ch. 7.3 - In the following exercises, factor. 151. 2t2+7t+5Ch. 7.3 - In the following exercises, factor. 152....Ch. 7.3 - In the following exercises, factor. 153....Ch. 7.3 - In the following exercises, factor. 154. 7b2+50b+7Ch. 7.3 - In the following exercises, factor. 155. 4w25w+1Ch. 7.3 - In the following exercises, factor. 156. 5x217x+6Ch. 7.3 - In the following exercises, factor. 157. 6p219p+10Ch. 7.3 - In the following exercises, factor. 158....Ch. 7.3 - In the following exercises, factor. 159. 4q27q2Ch. 7.3 - In the following exercises, factor. 160. 10y253y11Ch. 7.3 - In the following exercises, factor. 161. 4p2+17p15Ch. 7.3 - In the following exercises, factor. 162. 6u2+5u14Ch. 7.3 - In the following exercises, factor. 163....Ch. 7.3 - In the following exercises, factor. 164....Ch. 7.3 - In the following exercises, factor. 165....Ch. 7.3 - In the following exercises, factor. 166....Ch. 7.3 - In the following exercises, factor. 167. 5n2+21n+4Ch. 7.3 - In the following exercises, factor. 168. 8w2+25w+3Ch. 7.3 - In the following exercises, factor. 169. 9z2+15z+4Ch. 7.3 - In the following exercises, factor. 170....Ch. 7.3 - In the following exercises, factor. 171. 4k216k+15Ch. 7.3 - In the following exercises, factor. 172. 4q29q+5Ch. 7.3 - In the following exercises, factor. 173. 5s29s+4Ch. 7.3 - In the following exercises, factor. 174. 4r220r+25Ch. 7.3 - In the following exercises, factor. 175. 6y2+y15Ch. 7.3 - In the following exercises, factor. 176. 6p2+p22Ch. 7.3 - In the following exercises, factor. 177. 2n227n45Ch. 7.3 - In the following exercises, factor. 178. 12z241z11Ch. 7.3 - In the following exercises, factor. 179. 3x2+5x+4Ch. 7.3 - In the following exercises, factor. 180. 4y2+15y+6Ch. 7.3 - In the following exercises, factor. 181....Ch. 7.3 - In the following exercises, factor. 182. 6u246u16Ch. 7.3 - In the following exercises, factor. 183....Ch. 7.3 - In the following exercises, factor. 184....Ch. 7.3 - In the following exercises, factor. 185....Ch. 7.3 - In the following exercises, factor. 186....Ch. 7.3 - In the following exercises, factor. 187....Ch. 7.3 - In the following exercises, factor. 188....Ch. 7.3 - In the following exercises, factor. 189....Ch. 7.3 - In the following exercises, factor. 190....Ch. 7.3 - In the following exercises, factor. 191. a2a20Ch. 7.3 - In the following exercises, factor. 192. m2m12Ch. 7.3 - In the following exercises, factor. 193. 6n2+5n4Ch. 7.3 - In the following exercises, factor. 194....Ch. 7.3 - In the following exercises, factor. 195. 2p2+4p+3Ch. 7.3 - In the following exercises, factor. 196. 3q2+6q+2Ch. 7.3 - In the following exercises, factor. 197....Ch. 7.3 - In the following exercises, factor. 198....Ch. 7.3 - In the following exercises, factor. 199. x2+3x28Ch. 7.3 - In the following exercises, factor. 200. 6u2+7u5Ch. 7.3 - In the following exercises, factor. 201. 3p2+21pCh. 7.3 - In the following exercises, factor. 202. 7x221xCh. 7.3 - In the following exercises, factor. 203....Ch. 7.3 - In the following exercises, factor. 204....Ch. 7.3 - In the following exercises, factor. 205....Ch. 7.3 - In the following exercises, factor. 206. 4a2+5a+2Ch. 7.3 - In the following exercises, factor. 207. x2+2x24Ch. 7.3 - In the following exercises, factor. 208. 2b27b+4Ch. 7.3 - Height of a toy rocket The height of a toy rocket...Ch. 7.3 - Height of a beach ball The height of a beach ball...Ch. 7.3 - List, in order, all the steps you take when using...Ch. 7.3 - How is the “ac” method similar to the “undo FOIL”...Ch. 7.3 - What are the questions, in order, that you ask...Ch. 7.3 - On your paper draw the chart that summarizes the...Ch. 7.4 - Factor: 4x2+12x+9 .Ch. 7.4 - Factor: 9y2+24y+16 .Ch. 7.4 - Factor: 64y280y+25 .Ch. 7.4 - Factor: 16z272z+81 .Ch. 7.4 - Factor: 49x2+84xy+36y2 .Ch. 7.4 - Factor: 64m2+112mn+49n2 .Ch. 7.4 - Factor: 16r2+30rs+9s2 .Ch. 7.4 - Factor: 9u2+87u+100 .Ch. 7.4 - Factor: 8x2y24xy+18y .Ch. 7.4 - Factor: 27p2q+90pq+75q .Ch. 7.4 - Factor: h281 .Ch. 7.4 - Factor: k2121 .Ch. 7.4 - Factor: m21 .Ch. 7.4 - Factor: 81y21 .Ch. 7.4 - Factor: 196m225n2 .Ch. 7.4 - Factor: 144p29q2 .Ch. 7.4 - Factor: 144x2 .Ch. 7.4 - Factor: 169p2 .Ch. 7.4 - Factor: a4b4 .Ch. 7.4 - Factor: x416 .Ch. 7.4 - Factor: 7xy2175x .Ch. 7.4 - Factor: 45a2b80b .Ch. 7.4 - Factor: 8a2+20 .Ch. 7.4 - Factor: 36y2+81 .Ch. 7.4 - Factor: x3+27 .Ch. 7.4 - Factor: y3+8 .Ch. 7.4 - Factor: u3125 .Ch. 7.4 - Factor: v3343 .Ch. 7.4 - Factor: 6427x3 .Ch. 7.4 - Factor: 278y3 .Ch. 7.4 - Factor: 8x327y3 .Ch. 7.4 - Factor: 1000m3125n3 .Ch. 7.4 - Factor: 500p3+4q3 .Ch. 7.4 - Factor: 432c3+686d3 .Ch. 7.4 - In the following exercises, factor. 215....Ch. 7.4 - In the following exercises, factor. 216....Ch. 7.4 - In the following exercises, factor. 217....Ch. 7.4 - In the following exercises, factor. 218....Ch. 7.4 - In the following exercises, factor. 219....Ch. 7.4 - In the following exercises, factor. 220. 64z216z+1Ch. 7.4 - In the following exercises, factor. 221....Ch. 7.4 - In the following exercises, factor. 222....Ch. 7.4 - In the following exercises, factor. 223....Ch. 7.4 - In the following exercises, factor. 224....Ch. 7.4 - In the following exercises, factor. 225....Ch. 7.4 - In the following exercises, factor. 226....Ch. 7.4 - In the following exercises, factor. 227. 64m234m+1Ch. 7.4 - In the following exercises, factor. 228....Ch. 7.4 - In the following exercises, factor. 229....Ch. 7.4 - In the following exercises, factor. 230....Ch. 7.4 - In the following exercises, factor. 231....Ch. 7.4 - In the following exercises, factor. 232....Ch. 7.4 - In the following exercises, factor. 233. x216Ch. 7.4 - In the following exercises, factor. 234. n29Ch. 7.4 - In the following exercises, factor. 235. 25v21Ch. 7.4 - In the following exercises, factor. 236. 169q21Ch. 7.4 - In the following exercises, factor. 237....Ch. 7.4 - In the following exercises, factor. 238. 49x281y2Ch. 7.4 - In the following exercises, factor. 239. 169c236d2Ch. 7.4 - In the following exercises, factor. 240. 36p249q2Ch. 7.4 - In the following exercises, factor. 241. 449x2Ch. 7.4 - In the following exercises, factor. 242. 12125s2Ch. 7.4 - In the following exercises, factor. 243. 16z41Ch. 7.4 - In the following exercises, factor. 244. m4n4Ch. 7.4 - In the following exercises, factor. 245. 5q245Ch. 7.4 - In the following exercises, factor. 246. 98r372rCh. 7.4 - In the following exercises, factor. 247. 24p2+54Ch. 7.4 - In the following exercises, factor. 248. 20b2+140Ch. 7.4 - In the following exercises, factor. 249. x3+125Ch. 7.4 - In the following exercises, factor. 250. n3+512Ch. 7.4 - In the following exercises, factor. 251. z327Ch. 7.4 - In the following exercises, factor. 252. v3216Ch. 7.4 - In the following exercises, factor. 253. 8343t3Ch. 7.4 - In the following exercises, factor. 254. 12527w3Ch. 7.4 - In the following exercises, factor. 255. 8y3125z3Ch. 7.4 - In the following exercises, factor. 256. 27x364y3Ch. 7.4 - In the following exercises, factor. 257. 7k3+56Ch. 7.4 - In the following exercises, factor. 258. 6x348y3Ch. 7.4 - In the following exercises, factor. 259. 216y3Ch. 7.4 - In the following exercises, factor. 260. 2x316y3Ch. 7.4 - In the following exercises, factor. 261. 64a225Ch. 7.4 - In the following exercises, factor. 262. 121x2144Ch. 7.4 - In the following exercises, factor. 263. 27q23Ch. 7.4 - In the following exercises, factor. 264. 4p2100Ch. 7.4 - In the following exercises, factor. 265....Ch. 7.4 - In the following exercises, factor. 266....Ch. 7.4 - In the following exercises, factor. 267. 8p2+2Ch. 7.4 - In the following exercises, factor. 268. 81x2+169Ch. 7.4 - In the following exercises, factor. 269. 1258y3Ch. 7.4 - In the following exercises, factor. 270. 27u3+1000Ch. 7.4 - In the following exercises, factor. 271....Ch. 7.4 - In the following exercises, factor. 272....Ch. 7.4 - Landscaping Sue and Alan are planning to put a 15...Ch. 7.4 - Home repair The height a twelve foot ladder can...Ch. 7.4 - Why was it important to practice using the...Ch. 7.4 - How do you recognize the binomial squares pattern?Ch. 7.4 - Explain why n2+25(n+5)2 . Use algebra, words, or...Ch. 7.4 - Maribel factored y230y+81 as (y9)2 . Was she right...Ch. 7.5 - Factor completely: 3a4+18a3 .Ch. 7.5 - Factor completely: 45b6+27b5 .Ch. 7.5 - Factor completely: 10a217a+6 .Ch. 7.5 - Factor completely: 8x218x+9 .Ch. 7.5 - Factor completely: x3+36x .Ch. 7.5 - Factor completely: 27y2+48 .Ch. 7.5 - Factor completely: 16x336x .Ch. 7.5 - Factor completely: 27y248 .Ch. 7.5 - Factor completely: 4x2+20xy+25y2 .Ch. 7.5 - Factor completely: 9m2+42mn+49n2 .Ch. 7.5 - Factor completely: 8y2+16y24 .Ch. 7.5 - Factor completely: 5u215u270 .Ch. 7.5 - Factor completely: 250m3+432 .Ch. 7.5 - Factor completely: 81q3+192 .Ch. 7.5 - Factor completely: 4a464 .Ch. 7.5 - Factor completely: 7y47 .Ch. 7.5 - Factor completely: 6x212xc+6bx12bc .Ch. 7.5 - Factor completely: 16x2+24xy4x6y .Ch. 7.5 - Factor completely: 4p216p+12 .Ch. 7.5 - Factor completely: 6q29q6 .Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - In the following exercises, factor completely....Ch. 7.5 - Watermelon drop A springtime tradition at the...Ch. 7.5 - Pumpkin drop A fall tradition at the University of...Ch. 7.5 - The difference of squares y4625 can be factored as...Ch. 7.5 - Of all the factoring methods covered in this...Ch. 7.6 - Solve: (x3)(x+5)=0 .Ch. 7.6 - Solve: (y6)(y+9)=0 .Ch. 7.6 - Solve: (3m2)(2m+1)=0 .Ch. 7.6 - Solve: (4p+3)(4p3)=0 .Ch. 7.6 - Solve: 2u(5u1)=0 .Ch. 7.6 - Solve: w(2w+3)=0 .Ch. 7.6 - Solve: (x+1)2=0 .Ch. 7.6 - Solve: (v2)2=0 .Ch. 7.6 - Solve: x2x12=0 .Ch. 7.6 - Solve: b2+9b+14=0 .Ch. 7.6 - Solve: 3c2=10c8 .Ch. 7.6 - Solve: 2d25d=3 .Ch. 7.6 - Solve: 6a2+9a=3a .Ch. 7.6 - Solve: 45b22b=17b .Ch. 7.6 - Solve: 25p2=49 .Ch. 7.6 - Solve: 36x2=121 .Ch. 7.6 - Solve: (2m+1)(m+3)=12m .Ch. 7.6 - Solve: (k+1)(k1)=8 .Ch. 7.6 - Solve: 8x3=24x218x .Ch. 7.6 - Solve: 16y2=32y3+2y .Ch. 7.6 - Solve: 18a230=33a .Ch. 7.6 - Solve: 123b=660b2 .Ch. 7.6 - The product of two consecutive integers is 240....Ch. 7.6 - The product of two consecutive integers is 420....Ch. 7.6 - A rectangular sign has area 30 square feet. The...Ch. 7.6 - A rectangular patio has area 180 square feet. The...Ch. 7.6 - A boat’s sail is a right triangle. The length of...Ch. 7.6 - A meditation garden is in the shape of a right...Ch. 7.6 - In the following exercises, solve. 315....Ch. 7.6 - In the following exercises, solve. 316....Ch. 7.6 - In the following exercises, solve. 317....Ch. 7.6 - In the following exercises, solve. 318....Ch. 7.6 - In the following exercises, solve. 319. 6m(12m5)=0Ch. 7.6 - In the following exercises, solve. 320. 2x(6x3)=0Ch. 7.6 - In the following exercises, solve. 321. (y3)2=0Ch. 7.6 - In the following exercises, solve. 322. (b+10)2=0Ch. 7.6 - In the following exercises, solve. 323. (2x1)2=0Ch. 7.6 - In the following exercises, solve. 324. (3y+5)2=0Ch. 7.6 - In the following exercises, solve. 325. x2+7x+12=0Ch. 7.6 - In the following exercises, solve. 326. y28y+15=0Ch. 7.6 - In the following exercises, solve. 327. 5a226a=24Ch. 7.6 - In the following exercises, solve. 328. 4b2+7b=3Ch. 7.6 - In the following exercises, solve. 329. 4m2=17m15Ch. 7.6 - In the following exercises, solve. 330....Ch. 7.6 - In the following exercises, solve. 331. 7a2+14a=7aCh. 7.6 - In the following exercises, solve. 332. 12b215b=9bCh. 7.6 - In the following exercises, solve. 333. 49m2=144Ch. 7.6 - In the following exercises, solve. 334. 625=x2Ch. 7.6 - In the following exercises, solve. 335....Ch. 7.6 - In the following exercises, solve. 336....Ch. 7.6 - In the following exercises, solve. 337....Ch. 7.6 - In the following exercises, solve. 338....Ch. 7.6 - In the following exercises, solve. 339....Ch. 7.6 - In the following exercises, solve. 340. m32m2=mCh. 7.6 - In the following exercises, solve. 341. 20x260x=45Ch. 7.6 - In the following exercises, solve. 342. 3y218y=27Ch. 7.6 - In the following exercises, solve. 343. The...Ch. 7.6 - In the following exercises, solve. 344. The...Ch. 7.6 - In the following exercises, solve. 345. The area...Ch. 7.6 - In the following exercises, solve. 346. A...Ch. 7.6 - In the following exercises, solve. 347. A pennant...Ch. 7.6 - In the following exercises, solve. 348. A...Ch. 7.6 - In the following exercises, solve. 349....Ch. 7.6 - In the following exercises, solve. 350....Ch. 7.6 - In the following exercises, solve. 351....Ch. 7.6 - In the following exercises, solve. 352. q212q13=0Ch. 7.6 - In the following exercises, solve. 353. m2=6m+16Ch. 7.6 - In the following exercises, solve. 354. 4n2+19n=5Ch. 7.6 - In the following exercises, solve. 355. a3a242a=0Ch. 7.6 - In the following exercises, solve. 356....Ch. 7.6 - In the following exercises, solve. 357. The...Ch. 7.6 - In the following exercises, solve. 358. The length...Ch. 7.6 - Area of a patio If each side of a square patio is...Ch. 7.6 - Watermelon drop A watermelon is dropped from the...Ch. 7.6 - Explain how you solve a quadratic equation. How...Ch. 7.6 - Give an example of a quadratic equation that has a...Ch. 7 - In the following exercises, find the greatest...Ch. 7 - In the following exercises, find the greatest...Ch. 7 - In the following exercises, find the greatest...Ch. 7 - In the following exercises, find the greatest...Ch. 7 - In the following exercises, factor the greatest...Ch. 7 - In the following exercises, factor the greatest...Ch. 7 - In the following exercises, factor the greatest...Ch. 7 - In the following exercises, factor the greatest...Ch. 7 - In the following exercises, factor by grouping....Ch. 7 - In the following exercises, factor by grouping....Ch. 7 - In the following exercises, factor by grouping....Ch. 7 - In the following exercises, factor by grouping....Ch. 7 - In the following exercises, factor by grouping....Ch. 7 - In the following exercises, factor by grouping....Ch. 7 - In the following exercises, factor each trinomial...Ch. 7 - In the following exercises, factor each trinomial...Ch. 7 - In the following exercises, factor each trinomial...Ch. 7 - In the following exercises, factor each trinomial...Ch. 7 - In the following exercises, factor each trinomial...Ch. 7 - In the following exercises, factor each trinomial...Ch. 7 - In the following exercises, factor each trinomial...Ch. 7 - In the following exercises, factor each trinomial...Ch. 7 - In the following examples, factor each trinomial...Ch. 7 - In the following examples, factor each trinomial...Ch. 7 - In the following examples, factor each trinomial...Ch. 7 - In the following examples, factor each trinomial...Ch. 7 - In the following exercises, identify the best...Ch. 7 - In the following exercises, identify the best...Ch. 7 - In the following exercises, identify the best...Ch. 7 - In the following exercises, identify the best...Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor. 397. 2x2+9x+4Ch. 7 - In the following exercises, factor. 398....Ch. 7 - In the following exercises, factor. 399. 18a29a+1Ch. 7 - In the following exercises, factor. 400. 8u214u+3Ch. 7 - In the following exercises, factor. 401. 15p2+2p8Ch. 7 - In the following exercises, factor. 402. 15x2+6x2Ch. 7 - In the following exercises, factor. 403. 40s2s6Ch. 7 - In the following exercises, factor. 404. 20n27n3Ch. 7 - In the following exercises, factor. 405. 3x2+3x36Ch. 7 - In the following exercises, factor. 406. 4x2+4x8Ch. 7 - In the following exercises, factor. 407. 60y285y25Ch. 7 - In the following exercises, factor. 408. 18a257a21Ch. 7 - In the following exercises, factor. 409....Ch. 7 - In the following exercises, factor. 410....Ch. 7 - In the following exercises, factor. 411....Ch. 7 - In the following exercises, factor. 412....Ch. 7 - In the following exercises, factor. 413....Ch. 7 - In the following exercises, factor. 414....Ch. 7 - In the following exercises, factor. 415....Ch. 7 - In the following exercises, factor. 416....Ch. 7 - In the following exercises, factor. 417. 81r225Ch. 7 - In the following exercises, factor. 418. 49a2144Ch. 7 - In the following exercises, factor. 419. 169m2n2Ch. 7 - In the following exercises, factor. 420. 64x2y2Ch. 7 - In the following exercises, factor. 421. 25p21Ch. 7 - In the following exercises, factor. 422. 116s2Ch. 7 - In the following exercises, factor. 423. 9121y2Ch. 7 - In the following exercises, factor. 424. 100k281Ch. 7 - In the following exercises, factor. 425. 20x2125Ch. 7 - In the following exercises, factor. 426. 18y298Ch. 7 - In the following exercises, factor. 427. 49u39uCh. 7 - In the following exercises, factor. 428. 169n3nCh. 7 - In the following exercises, factor. 429. a3125Ch. 7 - In the following exercises, factor. 430. b3216Ch. 7 - In the following exercises, factor. 431. 2m3+54Ch. 7 - In the following exercises, factor. 432. 81x3+3Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, solve. 445....Ch. 7 - In the following exercises, solve. 446....Ch. 7 - In the following exercises, solve. 447....Ch. 7 - In the following exercises, solve. 448....Ch. 7 - In the following exercises, solve. 449. x2+9x+20=0Ch. 7 - In the following exercises, solve. 450. y2y72=0Ch. 7 - In the following exercises, solve. 451. 2p211p=40Ch. 7 - In the following exercises, solve. 452....Ch. 7 - In the following exercises, solve. 453. 144m225=0Ch. 7 - In the following exercises, solve. 454. 4n2=36Ch. 7 - In the following exercises, solve. 455. The...Ch. 7 - In the following exercises, solve. 456. The area...Ch. 7 - In the following exercises, find the Greatest...Ch. 7 - In the following exercises, find the Greatest...Ch. 7 - In the following exercises, find the Greatest...Ch. 7 - In the following exercises, find the Greatest...Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, factor completely....Ch. 7 - In the following exercises, solve. 478. x2+9x+20=0Ch. 7 - In the following exercises, solve. 479. y2=y+132Ch. 7 - In the following exercises, solve. 480. 5a2+26a=24Ch. 7 - In the following exercises, solve. 481. 9b29=0Ch. 7 - In the following exercises, solve. 482. 16m2=0Ch. 7 - In the following exercises, solve. 483....Ch. 7 - In the following exercises, solve. 484....Ch. 7 - In the following exercises, solve. 485. The...Ch. 7 - In the following exercises, solve. 486. The area...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Find how many SDs above the mean price would be predicted to cost.
Intro Stats, Books a la Carte Edition (5th Edition)
In Exercises 5-36, express all probabilities as fractions.
23. Combination Lock The typical combination lock us...
Elementary Statistics
Fill in each blanks so that the resulting statement is true. Any set of ordered pairs is called a/an _______. T...
College Algebra (7th Edition)
Children of First Ladies This list represents the number of children for the first six “first ladies” of the Un...
Introductory Statistics
Continuity at a point Determine whether the following functions are continuous at a. Use the continuity checkli...
Calculus: Early Transcendentals (2nd Edition)
In hypothesis testing, the common level of significance is =0.05. Some might argue for a level of significance ...
Basic Business Statistics, Student Value Edition
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Question 4 Find the value of the first element for the first row of the inverse matrix of matrix B. 3 Not yet answered B = Marked out of 5.00 · (³ ;) Flag question 7 [Provide your answer as an integer number (no fraction). For a decimal number, round your answer to 2 decimal places] Answer:arrow_forwardQuestion 2 Not yet answered Multiply the following Matrices together: [77-4 A = 36 Marked out of -5 -5 5.00 B = 3 5 Flag question -6 -7 ABarrow_forwardAssume {u1, U2, u3, u4} does not span R³. Select the best statement. A. {u1, U2, u3} spans R³ if u̸4 is a linear combination of other vectors in the set. B. We do not have sufficient information to determine whether {u₁, u2, u3} spans R³. C. {U1, U2, u3} spans R³ if u̸4 is a scalar multiple of another vector in the set. D. {u1, U2, u3} cannot span R³. E. {U1, U2, u3} spans R³ if u̸4 is the zero vector. F. none of the abovearrow_forward
- Select the best statement. A. If a set of vectors includes the zero vector 0, then the set of vectors can span R^ as long as the other vectors are distinct. n B. If a set of vectors includes the zero vector 0, then the set of vectors spans R precisely when the set with 0 excluded spans Rª. ○ C. If a set of vectors includes the zero vector 0, then the set of vectors can span Rn as long as it contains n vectors. ○ D. If a set of vectors includes the zero vector 0, then there is no reasonable way to determine if the set of vectors spans Rn. E. If a set of vectors includes the zero vector 0, then the set of vectors cannot span Rn. F. none of the abovearrow_forwardWhich of the following sets of vectors are linearly independent? (Check the boxes for linearly independent sets.) ☐ A. { 7 4 3 13 -9 8 -17 7 ☐ B. 0 -8 3 ☐ C. 0 ☐ D. -5 ☐ E. 3 ☐ F. 4 THarrow_forward3 and = 5 3 ---8--8--8 Let = 3 U2 = 1 Select all of the vectors that are in the span of {u₁, u2, u3}. (Check every statement that is correct.) 3 ☐ A. The vector 3 is in the span. -1 3 ☐ B. The vector -5 75°1 is in the span. ГОЛ ☐ C. The vector 0 is in the span. 3 -4 is in the span. OD. The vector 0 3 ☐ E. All vectors in R³ are in the span. 3 F. The vector 9 -4 5 3 is in the span. 0 ☐ G. We cannot tell which vectors are i the span.arrow_forward
- (20 p) 1. Find a particular solution satisfying the given initial conditions for the third-order homogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y(3)+2y"-y-2y = 0; y(0) = 1, y'(0) = 2, y"(0) = 0; y₁ = e*, y2 = e¯x, y3 = e−2x (20 p) 2. Find a particular solution satisfying the given initial conditions for the second-order nonhomogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y"-2y-3y = 6; y(0) = 3, y'(0) = 11 yc = c₁ex + c2e³x; yp = −2 (60 p) 3. Find the general, and if possible, particular solutions of the linear systems of differential equations given below using the eigenvalue-eigenvector method. (See Section 7.3 in your textbook if you need a review of the subject.) = a) x 4x1 + x2, x2 = 6x1-x2 b) x=6x17x2, x2 = x1-2x2 c) x = 9x1+5x2, x2 = −6x1-2x2; x1(0) = 1, x2(0)=0arrow_forwardFind the perimeter and areaarrow_forwardAssume {u1, U2, us} spans R³. Select the best statement. A. {U1, U2, us, u4} spans R³ unless u is the zero vector. B. {U1, U2, us, u4} always spans R³. C. {U1, U2, us, u4} spans R³ unless u is a scalar multiple of another vector in the set. D. We do not have sufficient information to determine if {u₁, u2, 43, 114} spans R³. OE. {U1, U2, 3, 4} never spans R³. F. none of the abovearrow_forward
- Assume {u1, U2, 13, 14} spans R³. Select the best statement. A. {U1, U2, u3} never spans R³ since it is a proper subset of a spanning set. B. {U1, U2, u3} spans R³ unless one of the vectors is the zero vector. C. {u1, U2, us} spans R³ unless one of the vectors is a scalar multiple of another vector in the set. D. {U1, U2, us} always spans R³. E. {U1, U2, u3} may, but does not have to, span R³. F. none of the abovearrow_forwardLet H = span {u, v}. For each of the following sets of vectors determine whether H is a line or a plane. Select an Answer u = 3 1. -10 8-8 -2 ,v= 5 Select an Answer -2 u = 3 4 2. + 9 ,v= 6arrow_forwardSolve for the matrix X: X (2 7³) x + ( 2 ) - (112) 6 14 8arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
Elementary Algebra
Algebra
ISBN:9780998625713
Author:Lynn Marecek, MaryAnne Anthony-Smith
Publisher:OpenStax - Rice University
Whiteboard Math: The Basics of Factoring; Author: Whiteboard Math;https://www.youtube.com/watch?v=-VKAYqzRp4o;License: Standard YouTube License, CC-BY
Factorisation using Algebraic Identities | Algebra | Mathacademy; Author: Mathacademy;https://www.youtube.com/watch?v=BEp1PaU-qEw;License: Standard YouTube License, CC-BY
How To Factor Polynomials The Easy Way!; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=U6FndtdgpcA;License: Standard Youtube License