
Fundamentals of Differential Equations and Boundary Value Problems
7th Edition
ISBN: 9780321977106
Author: Nagle, R. Kent
Publisher: Pearson Education, Limited
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7.3, Problem 15E
In Problems 1- 20, determine the Laplace transform of the given function using Table
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
As discussed in Section 8.3, the Markowitz model uses the variance of the portfolio as the measure of risk. However, variance includes deviations both below and above the mean return. Semivariance includes only deviations below the mean and is considered by many to be a better measure of risk.
(a)
Develop a model that minimizes semivariance for the Hauck Financial data given in the file HauckData with a required return of 10%.
Assume
that the five planning scenarios in the Hauck Financial Services model are equally likely to occur. Hint: Modify model (8.10)–(8.19). Define a variable ds for each scenario and let
ds ≥ R − Rs
with
ds ≥ 0.
Then make the objective function:
Min
1
5
5
s = 1
ds2.
Let
FS = proportion of portfolio invested in the foreign stock mutual fund
IB = proportion of portfolio invested in the intermediate-term bond fund
LG = proportion of portfolio invested in the large-cap growth fund
LV = proportion of portfolio invested in the large-cap value fund…
Calculus lll
May I please have the blank lines completed, and final statement defined as a result?
Thank you for the support!
For each month of the year, Taylor collected the average high temperatures in Jackson, Mississippi. He used the data to create the histogram shown. Which set of data did he use to create the histogram?
A
55, 60, 64, 72, 73, 75, 77, 81, 83, 91, 91, 92\ 55,\ 60,\ 64,\ 72,\ 73,\ 75,\ 77,\ 81,\ 83,\ 91,\ 91,\ 92 55, 60, 64, 72, 73, 75, 77, 81, 83, 91, 91, 92
B
55, 57, 60, 65, 70, 71, 78, 79, 85, 86, 88, 91\ 55,\ 57,\ 60,\ 65,\ 70,\ 71,\ 78,\ 79,\ 85,\ 86,\ 88,\ 91 55, 57, 60, 65, 70, 71, 78, 79, 85, 86, 88, 91
C
55, 60, 63, 64, 65, 71, 83, 87, 88, 88, 89, 93\ 55,\ 60,\ 63,\ 64,\ 65,\ 71,\ 83,\ 87,\ 88,\ 88,\ 89,\ 93 55, 60, 63, 64, 65, 71, 83, 87, 88, 88, 89, 93
D
55, 58, 60, 66, 68, 75, 77, 82, 86, 89, 91, 91\ 55,\ 58,\ 60,\ 66,\ 68,\ 75,\ 77,\ 82,\ 86,\ 89,\ 91,\ 91 55, 58, 60, 66, 68, 75, 77, 82, 86, 89, 91, 91
Chapter 7 Solutions
Fundamentals of Differential Equations and Boundary Value Problems
Ch. 7.2 - In Problems 1-12, use Definition 1 to determine...Ch. 7.2 - In Problems 1-12, use Definition 1 to determine...Ch. 7.2 - In Problems 1-12, use Definition 1 to determine...Ch. 7.2 - In Problems 1-12, use Definition 1 to determine...Ch. 7.2 - In Problems 1-12, use Definition 1 to determine...Ch. 7.2 - In Problems 1-12, use Definition 1 to determine...Ch. 7.2 - In Problems 1-12, use Definition 1 to determine...Ch. 7.2 - In Problems 1-12, use Definition 1 to determine...Ch. 7.2 - In Problems 1-12, use Definition 1 to determine...Ch. 7.2 - In Problems 1 -12, Use Definition 1 to determine...
Ch. 7.2 - In Problems 112, use Definition 1 to determine the...Ch. 7.2 - In Problems 112, use Definition 1 to determine the...Ch. 7.2 - In Problems 13-20, use the Laplace transform table...Ch. 7.2 - Prob. 14ECh. 7.2 - In Problems 13-20, use the Laplace transform table...Ch. 7.2 - In Problems 13-20, use the Laplace transform table...Ch. 7.2 - In Problems 13-20, use the Laplace transform table...Ch. 7.2 - In Problems 13-20, use the Laplace transform table...Ch. 7.2 - In Problems 13-20, use the Laplace transform table...Ch. 7.2 - In Problems 13-20, use the Laplace transform table...Ch. 7.2 - In Problems 2128, determine whether f(t) is...Ch. 7.2 - Prob. 22ECh. 7.2 - In Problems 21-28, determine whether f(t) is...Ch. 7.2 - In Problems 21-28, determine whether f(t) is...Ch. 7.2 - In Problems 21-28, determine whether f(t) is...Ch. 7.2 - In Problems 21-28, determine whether f(t) is...Ch. 7.2 - In Problems 21-28, determine whether f(t) is...Ch. 7.2 - In Problems 21-28, determine whether f(t) is...Ch. 7.2 - Which of the following functions are of...Ch. 7.2 - For the transforms F(s) in Table 7.1, what can be...Ch. 7.2 - Thanks to Eulers formula page 166 and the...Ch. 7.2 - Prob. 32ECh. 7.2 - Prove that if f is piecewise continuous on [a,b]...Ch. 7.3 - In Problems 1- 20, determine the Laplace transform...Ch. 7.3 - In Problems 1-20, determine the Laplace transform...Ch. 7.3 - In Problems 1-20, determine the Laplace transform...Ch. 7.3 - In Problems 1-20, determine the Laplace transform...Ch. 7.3 - In Problems 1-20, determine the Laplace transform...Ch. 7.3 - Prob. 6ECh. 7.3 - In Problems 1-20, determine the Laplace transform...Ch. 7.3 - In Problems 1-20, determine the Laplace transform...Ch. 7.3 - Prob. 9ECh. 7.3 - In Problems 1-20, determine the Laplace transform...Ch. 7.3 - In Problems 1- 20, determine the Laplace transform...Ch. 7.3 - In Problems 1- 20, determine the Laplace transform...Ch. 7.3 - In Problems 1- 20, determine the Laplace transform...Ch. 7.3 - In Problems 1- 20, determine the Laplace transform...Ch. 7.3 - In Problems 1- 20, determine the Laplace transform...Ch. 7.3 - In Problems 1- 20, determine the Laplace transform...Ch. 7.3 - In Problems 1- 20, determine the Laplace transform...Ch. 7.3 - In Problems 1- 20, determine the Laplace transform...Ch. 7.3 - Prob. 19ECh. 7.3 - Prob. 20ECh. 7.3 - Given that L{cosbt}(s)=s/(s2+b2), use the...Ch. 7.3 - Starting with the transform L{1}(s)=1/s, use...Ch. 7.3 - Use Theorem 4 on page 362 to show how entry 32...Ch. 7.3 - Show that L{eattn}(s)=n!/(sa)n+1 in two ways: a....Ch. 7.3 - Use formula (6) to help determine. a. L{tcosbt}....Ch. 7.3 - Prob. 26ECh. 7.3 - Prob. 27ECh. 7.3 - Prob. 28ECh. 7.3 - The transfer function of a linear system is...Ch. 7.3 - Prob. 30ECh. 7.3 - Prob. 31ECh. 7.3 - Prob. 32ECh. 7.3 - Prob. 33ECh. 7.3 - Prob. 34ECh. 7.3 - Prob. 35ECh. 7.3 - Prob. 36ECh. 7.3 - Initial value theorem. Apply the relation...Ch. 7.3 - Prob. 38ECh. 7.4 - In Problems 1-10, determine the inverse Laplace...Ch. 7.4 - In Problems 1-10, determine the inverse Laplace...Ch. 7.4 - In Problems 1-10, determine the inverse Laplace...Ch. 7.4 - In Problems 1-10, determine the inverse Laplace...Ch. 7.4 - Prob. 5ECh. 7.4 - In Problems 1-10, determine the inverse Laplace...Ch. 7.4 - In Problems 1-10, determine the inverse Laplace...Ch. 7.4 - In Problems 1-10, determine the inverse Laplace...Ch. 7.4 - In Problems 1-10, determine the inverse Laplace...Ch. 7.4 - In Problems 1-10, determine the inverse Laplace...Ch. 7.4 - Prob. 11ECh. 7.4 - Prob. 12ECh. 7.4 - In Problems 11-20, determine the partial fraction...Ch. 7.4 - Prob. 14ECh. 7.4 - In Problems 11-20, determine the partial fraction...Ch. 7.4 - In Problems 11-20, determine the partial fraction...Ch. 7.4 - Prob. 17ECh. 7.4 - Prob. 18ECh. 7.4 - In Problems 11-20, determine the partial fraction...Ch. 7.4 - In Problems 11-20, determine the partial fraction...Ch. 7.4 - In Problems 21-30, determine L1{F}....Ch. 7.4 - Prob. 22ECh. 7.4 - In Problems 21-30, determine L1{F}....Ch. 7.4 - In Problems 21-30, determine L1{F}....Ch. 7.4 - In Problems 21-30, determine L1{F}....Ch. 7.4 - In Problems 21-30, determine L1{F}....Ch. 7.4 - In Problems 21-30, determine L1{F}....Ch. 7.4 - In Problems 21-30, determine L1{F}....Ch. 7.4 - In Problems 21-30, determine L1{F}....Ch. 7.4 - In Problems 21-30, determine L1{F}....Ch. 7.4 - Determine the Laplace transform of each of the...Ch. 7.4 - Prob. 32ECh. 7.4 - Theorem 6 in Section 7.3 on page 364 can be...Ch. 7.4 - Theorem 6 in Section 7.3 on page 364 can be...Ch. 7.4 - Theorem 6 in Section 7.3 on page 364 can be...Ch. 7.4 - Theorem 6 in Section 7.3 on page 364 can be...Ch. 7.4 - Prob. 37ECh. 7.4 - Prob. 38ECh. 7.4 - Prob. 39ECh. 7.4 - Heavisides Expansion Formula. Let P(s) and Q(s) be...Ch. 7.4 - Prob. 41ECh. 7.4 - Prob. 42ECh. 7.4 - Prob. 43ECh. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 114, solve the given initial value...Ch. 7.5 - In Problems 1-14, solve the given initial value...Ch. 7.5 - In Problems 114, solve the given initial value...Ch. 7.5 - In Problems 1524, solve for Y(s), the Laplace...Ch. 7.5 - In Problems1524, solve for Y(s), the Laplace...Ch. 7.5 - In Problems 1524, solve for Y(s), the Laplace...Ch. 7.5 - In Problems 1524, solve for Y(s), the Laplace...Ch. 7.5 - In Problems 1524, solve for Y(s), the Laplace...Ch. 7.5 - In Problems 1524, solve for Y(s), the Laplace...Ch. 7.5 - In Problems 1524, solve for Y(s), the Laplace...Ch. 7.5 - In Problems 1524, solve for Y(s), the Laplace...Ch. 7.5 - In Problems 1524, solve for Y(s), the Laplace...Ch. 7.5 - In Problems 1524, solve for Y(s), the Laplace...Ch. 7.5 - In Problems 2528, solve the given third-order...Ch. 7.5 - In Problems 2528, solve the given third-order...Ch. 7.5 - In Problems 2528, solve the given third-order...Ch. 7.5 - In Problems 2528, solve the given third-order...Ch. 7.5 - In Problems 2932, use the method of Laplace...Ch. 7.5 - In Problems 2932, use the method of Laplace...Ch. 7.5 - In Problems 29-32, use the method of Laplace...Ch. 7.5 - In Problems 29-32, use the method of Laplace...Ch. 7.5 - Prob. 33ECh. 7.5 - Use Theorem 6 in Section 7.3, page 364, to show...Ch. 7.5 - In Problems 3538, find solutions to given initial...Ch. 7.5 - In Problems 3538, find solutions to given initial...Ch. 7.5 - In Problems 3538, find solutions to given initial...Ch. 7.5 - In Problems 3538, find solutions to given initial...Ch. 7.5 - Determine the error e(t) for the automatic pilot...Ch. 7.5 - Prob. 40ECh. 7.5 - Prob. 41ECh. 7.6 - In Problems 14, sketch the graph of the given...Ch. 7.6 - Prob. 2ECh. 7.6 - In Problems 14, sketch the graph of the given...Ch. 7.6 - Prob. 4ECh. 7.6 - In Problems 510, express the given function using...Ch. 7.6 - In Problems 510, express the given function using...Ch. 7.6 - Prob. 7ECh. 7.6 - In Problems 5-10, express the given function using...Ch. 7.6 - Prob. 9ECh. 7.6 - Prob. 10ECh. 7.6 - In Problems 1118, determine an inverse Laplace...Ch. 7.6 - Prob. 12ECh. 7.6 - In Problems 1118, determine an inverse Laplace...Ch. 7.6 - In Problems 1118, determine an inverse Laplace...Ch. 7.6 - In Problems 1118, determine an inverse Laplace...Ch. 7.6 - Prob. 16ECh. 7.6 - In Problems 1118, determine an inverse Laplace...Ch. 7.6 - In Problems 1118, determine an inverse Laplace...Ch. 7.6 - The current I(t) in an RLC series circuit is...Ch. 7.6 - The current I(t) in an LC series circuit is...Ch. 7.6 - In Problems 2124, solve the given initial value...Ch. 7.6 - In Problems 2124, solve the given initial value...Ch. 7.6 - In Problems 2124, solve the given initial value...Ch. 7.6 - In Problems 2124, solve the given initial value...Ch. 7.6 - In Problems 25-32, solve the given initial value...Ch. 7.6 - In Problems 2532, solve the given initial value...Ch. 7.6 - In Problems 2532, solve the given initial value...Ch. 7.6 - In Problems 2532, solve the given initial value...Ch. 7.6 - In Problems 2532, solve the given initial value...Ch. 7.6 - In Problems 25-32, solve the given initial value...Ch. 7.6 - In Problems 2532, solve the given initial value...Ch. 7.6 - In Problems 25-32, solve the given initial value...Ch. 7.6 - Prob. 35ECh. 7.7 - In Problems 1-4, determine L{f}, where f(t) is...Ch. 7.7 - Prob. 2ECh. 7.7 - Prob. 3ECh. 7.7 - In Problems 1-4, determine L{f}, where f(t) is...Ch. 7.7 - Prob. 5ECh. 7.7 - Prob. 6ECh. 7.7 - In Problems 5-8, determine L{f}, where the...Ch. 7.7 - Prob. 8ECh. 7.7 - Show that if L{g}(s)=[(s+)(1eTs)]1, where T0 is...Ch. 7.7 - Prob. 10ECh. 7.7 - Prob. 11ECh. 7.7 - Prob. 12ECh. 7.7 - Prob. 14ECh. 7.7 - Prob. 15ECh. 7.7 - Prob. 16ECh. 7.7 - In Problems 1518, find a Taylor series for f(t)...Ch. 7.7 - Prob. 18ECh. 7.7 - Prob. 19ECh. 7.7 - Use the recursive relation (7) and the fact that...Ch. 7.7 - Prob. 21ECh. 7.7 - Prob. 22ECh. 7.7 - Prob. 23ECh. 7.7 - Use the procedure discussed inProblem 23 to show...Ch. 7.7 - Find an expansion for ln[1+(1/s2)] in powers of...Ch. 7.7 - Prob. 26ECh. 7.7 - Prob. 27ECh. 7.8 - In Problems 14, use the convolution theorem to...Ch. 7.8 - Prob. 2ECh. 7.8 - Prob. 3ECh. 7.8 - Prob. 4ECh. 7.8 - Prob. 5ECh. 7.8 - Prob. 6ECh. 7.8 - Prob. 7ECh. 7.8 - In Problems 512, use the convolution theorem to...Ch. 7.8 - Prob. 9ECh. 7.8 - In Problems 512, use the convolution theorem to...Ch. 7.8 - In Problems 512, use the convolution theorem to...Ch. 7.8 - In Problems 512, use the convolution theorem to...Ch. 7.8 - Prob. 13ECh. 7.8 - Find the Laplace transform of f(t):=0tevsin(tv)dvCh. 7.8 - Prob. 15ECh. 7.8 - In Problems 1522, solve the given integral...Ch. 7.8 - Prob. 17ECh. 7.8 - Prob. 18ECh. 7.8 - In Problems 1522, solve the given integral...Ch. 7.8 - In Problems 1522, solve the given integral...Ch. 7.8 - In Problems 1522, solve the given integral...Ch. 7.8 - Prob. 22ECh. 7.8 - In Problems 2328, a linear system is governed by...Ch. 7.8 - Prob. 24ECh. 7.8 - In Problems 2328, a linear system is governed by...Ch. 7.8 - In Problems 2328, a linear system is governed by...Ch. 7.8 - In Problems 2328, a linear system is governed by...Ch. 7.8 - In Problems 2328, a linear system is governed by...Ch. 7.8 - Prob. 29ECh. 7.8 - In Problems 29 and 30, the current I(t) in an RLC...Ch. 7.8 - Prob. 31ECh. 7.8 - Prob. 32ECh. 7.8 - Prob. 33ECh. 7.8 - Prob. 34ECh. 7.8 - Prob. 35ECh. 7.8 - Prob. 36ECh. 7.9 - In Problems 1-6, evaluate the given integral....Ch. 7.9 - Prob. 2ECh. 7.9 - In Problems 1-6, evaluate the given integral....Ch. 7.9 - Prob. 4ECh. 7.9 - In Problems 1-6, evaluate the given integral....Ch. 7.9 - In Problems 1-6, evaluate the given integral....Ch. 7.9 - In Problems 7-12, determine the Laplace transform...Ch. 7.9 - In Problems 7-12, determine the Laplace transform...Ch. 7.9 - In Problems 7-12, determine the Laplace transform...Ch. 7.9 - In Problems 7-12, determine the Laplace transform...Ch. 7.9 - Prob. 11ECh. 7.9 - In Problems 7-12, determine the Laplace transform...Ch. 7.9 - Prob. 13ECh. 7.9 - In Problems 13-20, solve the given symbolic...Ch. 7.9 - Prob. 15ECh. 7.9 - In Problems 13-20, solve the given symbolic...Ch. 7.9 - In Problems 13-20, solve the given symbolic...Ch. 7.9 - In Problems 13-20, solve the given symbolic...Ch. 7.9 - Prob. 19ECh. 7.9 - In Problems 13-20, solve the given symbolic...Ch. 7.9 - In Problems 21-24, solve the given symbolic...Ch. 7.9 - Prob. 22ECh. 7.9 - In Problems 21-24, solve the given symbolic...Ch. 7.9 - Prob. 24ECh. 7.9 - Prob. 25ECh. 7.9 - Prob. 26ECh. 7.9 - Prob. 27ECh. 7.9 - Prob. 28ECh. 7.9 - Prob. 29ECh. 7.9 - Prob. 30ECh. 7.9 - A linear system is said to be stable if its...Ch. 7.9 - A linear system is said to be asymptotically...Ch. 7.9 - Prob. 33ECh. 7.9 - Prob. 34ECh. 7.9 - Figure 7.29 shows a beam of length 2 that is...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - Prob. 9ECh. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - Prob. 17ECh. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - In Problems 1-19, use the method of Laplace...Ch. 7.10 - Use the method of Laplace transforms to solve...Ch. 7.10 - Recompute the coupled mass-spring oscillator...Ch. 7.10 - In Problems 23 and 24, find a system of...Ch. 7.10 - In Problems 23 and 24, find a system of...Ch. 7.RP - In Problems 1 and 2, use the definition of the...Ch. 7.RP - In Problems 1 and 2, use the definition of the...Ch. 7.RP - Prob. 3RPCh. 7.RP - In Problems 3-10, determine the Laplace transform...Ch. 7.RP - In Problems 3-10, determine the Laplace transform...Ch. 7.RP - In Problems 3-10, determine the Laplace transform...Ch. 7.RP - Prob. 7RPCh. 7.RP - Prob. 8RPCh. 7.RP - Prob. 9RPCh. 7.RP - Prob. 10RPCh. 7.RP - Prob. 11RPCh. 7.RP - In Problems 11-17, determine the inverse Laplace...Ch. 7.RP - Prob. 13RPCh. 7.RP - Prob. 14RPCh. 7.RP - Prob. 15RPCh. 7.RP - Prob. 16RPCh. 7.RP - Prob. 17RPCh. 7.RP - Prob. 18RPCh. 7.RP - Prob. 19RPCh. 7.RP - In Problems 19-24, solve the given initial value...Ch. 7.RP - Prob. 21RPCh. 7.RP - Prob. 22RPCh. 7.RP - Prob. 23RPCh. 7.RP - Prob. 24RPCh. 7.RP - In Problems 25 and 26, find solutions to the given...Ch. 7.RP - In Problems 25 and 26, find solutions to the given...Ch. 7.RP - Prob. 27RPCh. 7.RP - Prob. 28RPCh. 7.RP - A linear system is governed by y5y+6y=g(t). Find...Ch. 7.RP - Prob. 30RPCh. 7.RP - Prob. 31RPCh. 7.RP - In Problems 31 and 32, use Laplace transforms to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- In this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0 given (under the measure P) by d.St 0.03 St dt + 0.2 St dwt, with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to price an option on this stock (which we name cubic put). This option is European-type, with maturity 3 months (i.e. T = 0.25 years), and payoff given by F = (8-5)+ (a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure Q. (You don't need to prove it, simply give the answer.) (b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2. (c) Let X = S. Find the Stochastic Differential Equation satisfied by the process (Xt) under the measure Q. (d) Find an explicit expression for X₁ = S3 under measure Q. (e) Using the results above, find the price of the cubic put option mentioned above. (f) Is the price in (e) the same as in question (b)? (Explain why.)arrow_forwardProblem 4. Margrabe formula and the Greeks (20 pts) In the homework, we determined the Margrabe formula for the price of an option allowing you to swap an x-stock for a y-stock at time T. For stocks with initial values xo, yo, common volatility σ and correlation p, the formula was given by Fo=yo (d+)-x0Þ(d_), where In (±² Ꭲ d+ õ√T and σ = σ√√√2(1 - p). дго (a) We want to determine a "Greek" for ỡ on the option: find a formula for θα (b) Is дго θα positive or negative? (c) We consider a situation in which the correlation p between the two stocks increases: what can you say about the price Fo? (d) Assume that yo< xo and p = 1. What is the price of the option?arrow_forwardThe Course Name Real Analysis please Solve questions by Real Analysisarrow_forward
- We consider a 4-dimensional stock price model given (under P) by dẴ₁ = µ· Xt dt + йt · ΣdŴt where (W) is an n-dimensional Brownian motion, π = (0.02, 0.01, -0.02, 0.05), 0.2 0 0 0 0.3 0.4 0 0 Σ= -0.1 -4a За 0 0.2 0.4 -0.1 0.2) and a E R. We assume that ☑0 = (1, 1, 1, 1) and that the interest rate on the market is r = 0.02. (a) Give a condition on a that would make stock #3 be the one with largest volatility. (b) Find the diversification coefficient for this portfolio as a function of a. (c) Determine the maximum diversification coefficient d that you could reach by varying the value of a? 2arrow_forwardQuestion 1. Your manager asks you to explain why the Black-Scholes model may be inappro- priate for pricing options in practice. Give one reason that would substantiate this claim? Question 2. We consider stock #1 and stock #2 in the model of Problem 2. Your manager asks you to pick only one of them to invest in based on the model provided. Which one do you choose and why ? Question 3. Let (St) to be an asset modeled by the Black-Scholes SDE. Let Ft be the price at time t of a European put with maturity T and strike price K. Then, the discounted option price process (ert Ft) t20 is a martingale. True or False? (Explain your answer.) Question 4. You are considering pricing an American put option using a Black-Scholes model for the underlying stock. An explicit formula for the price doesn't exist. In just a few words (no more than 2 sentences), explain how you would proceed to price it. Question 5. We model a short rate with a Ho-Lee model drt = ln(1+t) dt +2dWt. Then the interest rate…arrow_forwardIn this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0 given (under the measure P) by d.St 0.03 St dt + 0.2 St dwt, with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to price an option on this stock (which we name cubic put). This option is European-type, with maturity 3 months (i.e. T = 0.25 years), and payoff given by F = (8-5)+ (a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure Q. (You don't need to prove it, simply give the answer.) (b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2. (c) Let X = S. Find the Stochastic Differential Equation satisfied by the process (Xt) under the measure Q. (d) Find an explicit expression for X₁ = S3 under measure Q. (e) Using the results above, find the price of the cubic put option mentioned above. (f) Is the price in (e) the same as in question (b)? (Explain why.)arrow_forward
- 3. Consider the polynomial equation 6-iz+7z² - iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forwardThe managing director of a consulting group has the accompanying monthly data on total overhead costs and professional labor hours to bill to clients. Complete parts a through c. Question content area bottom Part 1 a. Develop a simple linear regression model between billable hours and overhead costs. Overhead Costsequals=212495.2212495.2plus+left parenthesis 42.4857 right parenthesis42.485742.4857times×Billable Hours (Round the constant to one decimal place as needed. Round the coefficient to four decimal places as needed. Do not include the $ symbol in your answers.) Part 2 b. Interpret the coefficients of your regression model. Specifically, what does the fixed component of the model mean to the consulting firm? Interpret the fixed term, b 0b0, if appropriate. Choose the correct answer below. A. The value of b 0b0 is the predicted billable hours for an overhead cost of 0 dollars. B. It is not appropriate to interpret b 0b0, because its value…arrow_forward3. Consider the polynomial equation 6-iz+7z2-iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forward
- Write the equation of the trigonometric function shown in the graph. LO 5 4 3 2 1 y -5 -5 4 8 8 500 -1 -2 -3 -4 -5 x 5 15л 5л 25л 15л 35π 5л 4 8 2 8 4 8arrow_forwardc) Using only Laplace transforms solve the following Samuelson model given below i.e., the second order difference equation (where yt is national income): - Yt+2 6yt+1+5y₁ = 0, if y₁ = 0 for t < 0, and y₁ = 0, y₁ = 1 1-e-s You may use without proof that L-1[s(1-re-s)] = f(t) = r² for n ≤tarrow_forward5. 156 m/WXY = 59° 63 E 7. B E 101 C mFE = 6. 68° 8. C 17arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Intro to the Laplace Transform & Three Examples; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=KqokoYr_h1A;License: Standard YouTube License, CC-BY