Problems 91–94 refer to the following: If a decrease in demand for one product results in an increase in demand for another product, the two products are said to be competitive, or substitute,
products. (Real whipping cream and imitation whipping cream are examples of competitive, or substitute, products.) If a decrease in demand for one product results in a decrease in demand for another product, the two products are said to be complementary products. (Fishing boats and outboard motors are examples of complementary products.) Partial derivatives can be used to test whether two products are competitive, complementary, or neither. We start with demand functions for two products such that the demand for either depends on the prices for both:
The variables x and y represent the number of units demanded of products A and B, respectively, at a price p for 1 unit of product A and a price q for I unit of product B. Normally, if the price of A increases while the price of B is held constant, then the demand for A will decrease; that is, fp(p, q) < 0. Then, if A and B are competitive products, the demand for B will increase; that is, gr(p, q) > 0. Similarly, if the price of B increases while the price of A is held constant, the demand for B will decrease; that is, gq(p, q) < 0. Then, if A and B are competitive products, the demand for A will increase; that is, fq(p, q) > 0. Reasoning similarly for complementary products, we arrive at the following test:
Test for Competitive and Complementary Products
Partial Derivatives | Products A and B |
fq(p, q) > and gp(p, q) > 0 | Competitive (substitute) |
fq(p, q) < and gp(p, q) < 0 | Complementary |
fq(p, q) ≥ and gp(p, q) ≤ 0 | Neither |
fq(p, q) ≤ and gp(p, q) ≥ 0 | Neither |
Use this test in Problems 91-94 to determine whether the indicated products are competitive, complementary, or neither.
93. Product demand. The monthly demand equations for the sale of skis and ski boots in a sporting goods store are
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Calculus for Business, Economics, Life Sciences, and Social Sciences (13th Edition)
- By considering appropriate series expansions, ex · ex²/2 . ¸²³/³ . . .. = = 1 + x + x² +…… when |x| < 1. By expanding each individual exponential term on the left-hand side and multiplying out, show that the coefficient of x 19 has the form 1/19!+1/19+r/s, where 19 does not divide s.arrow_forwardLet 1 1 r 1+ + + 2 3 + = 823 823s Without calculating the left-hand side, prove that r = s (mod 823³).arrow_forwardFor each real-valued nonprincipal character X mod 16, verify that L(1,x) 0.arrow_forward
- *Construct a table of values for all the nonprincipal Dirichlet characters mod 16. Verify from your table that Σ x(3)=0 and Χ mod 16 Σ χ(11) = 0. x mod 16arrow_forwardFor each real-valued nonprincipal character x mod 16, verify that A(225) > 1. (Recall that A(n) = Σx(d).) d\narrow_forward24. Prove the following multiplicative property of the gcd: a k b h (ah, bk) = (a, b)(h, k)| \(a, b)' (h, k) \(a, b)' (h, k) In particular this shows that (ah, bk) = (a, k)(b, h) whenever (a, b) = (h, k) = 1.arrow_forward
- 20. Let d = (826, 1890). Use the Euclidean algorithm to compute d, then express d as a linear combination of 826 and 1890.arrow_forwardLet 1 1+ + + + 2 3 1 r 823 823s Without calculating the left-hand side, Find one solution of the polynomial congruence 3x²+2x+100 = 0 (mod 343). Ts (mod 8233).arrow_forwardBy considering appropriate series expansions, prove that ez · e²²/2 . e²³/3 . ... = 1 + x + x² + · ·. when <1.arrow_forward
- Prove that Σ prime p≤x p=3 (mod 10) 1 Р = for some constant A. log log x + A+O 1 log x ,arrow_forwardLet Σ 1 and g(x) = Σ logp. f(x) = prime p≤x p=3 (mod 10) prime p≤x p=3 (mod 10) g(x) = f(x) logx - Ր _☑ t¯¹ƒ(t) dt. Assuming that f(x) ~ 1½π(x), prove that g(x) ~ 1x. 米 (You may assume the Prime Number Theorem: 7(x) ~ x/log x.) *arrow_forwardLet Σ logp. f(x) = Σ 1 and g(x) = Σ prime p≤x p=3 (mod 10) (i) Find ƒ(40) and g(40). prime p≤x p=3 (mod 10) (ii) Prove that g(x) = f(x) logx – [*t^¹ƒ(t) dt. 2arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning