Minimum Volume The function y = 4 − ( x 2 / 4 ) on the interval [0,4] is revolved about the line y = b (see figure). (a) Find the volume of the resulting solid as a function of b . (b) Use a graphing utility to graph the function in part (a), and use the graph to approximate the value of b that minimizes the volume of the solid. (c) Use calculus to find the value of b that minimizes the volume of the solid, and compare the result with the answer to part (b).
Minimum Volume The function y = 4 − ( x 2 / 4 ) on the interval [0,4] is revolved about the line y = b (see figure). (a) Find the volume of the resulting solid as a function of b . (b) Use a graphing utility to graph the function in part (a), and use the graph to approximate the value of b that minimizes the volume of the solid. (c) Use calculus to find the value of b that minimizes the volume of the solid, and compare the result with the answer to part (b).
Solution Summary: The author calculates the volume of resulting solid as a function of b when the function y=4-(x24) revolved about the line
A particle travels along a straight line path given by s=9.5t3-2.2t2-4.5t+9.9 (in meters).
What time does it change direction?
Report the higher of the answers to the nearest 2 decimal places in seconds.
Use the method of disks to find the volume of the solid that is obtained
when the region under the curve y = over the interval [4,17] is rotated
about the x-axis.
1. Find the area of the region enclosed between the curves y = x and y = x.
Sketch the region.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY