Organic Chemistry
Organic Chemistry
3rd Edition
ISBN: 9781119316152
Author: Klein, David R.
Publisher: WILEY
bartleby

Concept explainers

Question
Book Icon
Chapter 7.11, Problem 37PTS

(a)

Interpretation Introduction

Interpretation:

The major and minor products should be drawn for the given each elimination reactions.

Concept Introduction:

  • SN2Reaction: It is a nucleophilic substitution reaction in which the rate determining step depends on both of the molecules involved. The bond making and the bond breaking process happens simultaneously in this reaction.
  • Structure of the substrate plays major role in the reactivity of SN2 reaction. If the substrate is more substituted then the rate of the reaction will becomes slower. Since the mechanism of SN2 reaction proceeds through backside attack on the substrate, it depends on steric factor that if more groups attached near the leaving group the reactivity becomes slower.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.

(b)

Interpretation Introduction

Interpretation:

The major and minor products should be drawn for the given elimination reaction.

Concept Introduction:

  • Elimination reaction: In elimination reaction, two substituents are removed from the substrate to give the product in presence of base. Elimination reactions are two types, E1 and E2.
  • E1 reaction: elimination follows stepwise mechanism.
  • E2 reaction: elimination follows concerted pathway of mechanism.
  • Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.

(c)

Interpretation Introduction

Interpretation:

Major and minor product should be drawn for the given substrates during E2 elimination reaction.

Concept Introduction:

  • Elimination reaction: In elimination reaction, two substituents are removed from the substrate to give the product in presence of base. Elimination reactions are two types, E1 and E2.
  • E1 reaction: elimination follows stepwise mechanism.
  • E2 reaction: elimination follows concerted pathway of mechanism.
  • Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.

(d)

Interpretation Introduction

Interpretation:

The possible product should be drawn and identified for the given substrates during E2 elimination reaction.

Concept Introduction:

  • Elimination reaction: In elimination reaction, two substituents are removed from the substrate to give the product in presence of base. Elimination reactions are two types, E1 and E2.
  • E1 reaction: elimination follows stepwise mechanism.
  • E2 reaction: elimination follows concerted pathway of mechanism.
  • Elimination of compound in presence of bulky base leads to less substituted alkene, in presence of strong base (not bulky) leads to more substituted alkene.

(e)

Interpretation Introduction

Interpretation:

The major and minor products should be drawn for the given each elimination reactions.

Concept Introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile).
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(f)

Interpretation Introduction

Interpretation:

Major and minor product should be drawn for the given substrates during elimination reaction.

Concept Introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile).
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(g)

Interpretation Introduction

Interpretation:

Major and minor product should be drawn for the given substrates during elimination reaction.

Concept Introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile).
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(h)

Interpretation Introduction

Interpretation:

Major and minor product should be drawn for the given substrates during elimination reaction.

Concept Introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile).
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(i)

Interpretation Introduction

Interpretation:

Major and minor product should be drawn for the given substrates during elimination reaction.

Concept Introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile).
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(j)

Interpretation Introduction

Interpretation:

Major and minor product should be drawn for the given substrates during elimination reaction.

Concept Introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile).
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(k)

Interpretation Introduction

Interpretation:

Major and minor product should be drawn for the given substrates during elimination reaction.

Concept Introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile).
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(l)

Interpretation Introduction

Interpretation:

Major and minor product should be drawn for the given substrates during elimination reaction.

Concept Introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile).
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(m)

Interpretation Introduction

Interpretation:

Major and minor product should be drawn for the given substrates during elimination reaction.

Concept Introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile).
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

(n)

Interpretation Introduction

Interpretation:

Major and minor product should be drawn for the given substrates during elimination reaction.

Concept Introduction:

  • Highly polarizable reagents are considered as strong nucleophiles if the conjugate acid of the nucleophile has little nature then those nucleophiles considered as weak bases too. If the reagent is not polarizable and has basic nature, then the reagent is considered as strong base.
  • Reaction mechanism path is depending on both natures of substrate and reagent.
  • If the reagent is strong base as well as strong nucleophile and the substrate is primary alkyl halide then the reaction follows SN2 mechanism if the substrate is secondary alkyl halide then the reaction follows E2 mechanism. For SN2 mechanism reagent should be strong nucleophile.
  • If the substrate is tertiary alkyl halide, then the reaction follows SN1 mechanism rather than SN2 mechanism. (when the reagent is strong nucleophile).
  • If the reagent is strong bulky base, then the reaction follows E2 mechanism. For E2 reaction, reagent should be strong base.

Blurred answer
Students have asked these similar questions
1. Answer the questions about the following reaction: (a) Draw in the arrows that can be used make this reaction occur and draw in the product of substitution in this reaction. Be sure to include any relevant stereochemistry in the product structure. + SK F Br + (b) In which solvent would this reaction proceed the fastest (Circle one) Methanol Acetone (c) Imagine that you are working for a chemical company and it was your job to perform a similar reaction to the one above, with the exception of the S atom in this reaction being replaced by an O atom. During the reaction, you observe the formation of three separate molecules instead of the single molecule obtained above. What is the likeliest other products that are formed? Draw them in the box provided.
3. For the reactions below, draw the arrows corresponding to the transformations and draw in the boxes the reactants or products as indicated. Note: Part A should have arrows drawn going from the reactants to the middle structure and the arrows on the middle structure that would yield the final structure. For part B, you will need to draw in the reactant before being able to draw the arrows corresponding to product formation. A. B. Rearrangement ΘΗ
2. Draw the arrows required to make the following reactions occur. Please ensure your arrows point from exactly where you want to exactly where you want. If it is unclear from where arrows start or where they end, only partial credit will be given. Note: You may need to draw in lone pairs before drawing the arrows. A. B. H-Br 人 C Θ CI H Cl Θ + Br O

Chapter 7 Solutions

Organic Chemistry

Ch. 7.4 - Prob. 9CCCh. 7.5 - Prob. 10CCCh. 7.6 - Prob. 11CCCh. 7.7 - Provide a systematic name for each of the...Ch. 7.7 - Prob. 13CCCh. 7.7 - Prob. 14CCCh. 7.7 - Prob. 15CCCh. 7.7 - Prob. 16CCCh. 7.7 - Prob. 17CCCh. 7.8 - Prob. 3LTSCh. 7.8 - Predict the major and minor products for each of...Ch. 7.8 - Prob. 19PTSCh. 7.8 - Prob. 20ATSCh. 7.8 - Prob. 4LTSCh. 7.8 - Prob. 21PTSCh. 7.8 - Prob. 23CCCh. 7.8 - Prob. 24CCCh. 7.8 - Prob. 5LTSCh. 7.8 - Prob. 25PTSCh. 7.8 - Prob. 26ATSCh. 7.9 - Prob. 6LTSCh. 7.9 - Prob. 27PTSCh. 7.9 - Prob. 28ATSCh. 7.9 - Prob. 29CCCh. 7.9 - Prob. 30CCCh. 7.9 - Prob. 31CCCh. 7.9 - Prob. 32CCCh. 7.9 - Draw all of the expected products for each of the...Ch. 7.10 - Prob. 35CCCh. 7.10 - Prob. 36CCCh. 7.11 - Prob. 7LTSCh. 7.11 - Prob. 37PTSCh. 7.11 - Prob. 38ATSCh. 7.11 - Prob. 39ATSCh. 7.11 - Prob. 40ATSCh. 7.12 - Prob. 41CCCh. 7.12 - Prob. 42CCCh. 7.12 - Prob. 43CCCh. 7.13 - Prob. 8LTSCh. 7.13 - Prob. 44PTSCh. 7.13 - Prob. 45PTSCh. 7.13 - Prob. 46ATSCh. 7 - Prob. 47PPCh. 7 - Prob. 48PPCh. 7 - Prob. 49PPCh. 7 - Prob. 50PPCh. 7 - Prob. 51PPCh. 7 - Prob. 52PPCh. 7 - Prob. 53PPCh. 7 - Prob. 54PPCh. 7 - Prob. 55PPCh. 7 - Prob. 56PPCh. 7 - Prob. 57PPCh. 7 - Prob. 58PPCh. 7 - Prob. 59PPCh. 7 - Prob. 60PPCh. 7 - Prob. 61PPCh. 7 - Prob. 62PPCh. 7 - Prob. 63PPCh. 7 - Prob. 64PPCh. 7 - Prob. 65PPCh. 7 - Prob. 66PPCh. 7 - Prob. 67PPCh. 7 - Prob. 68PPCh. 7 - Prob. 69PPCh. 7 - Prob. 70PPCh. 7 - Prob. 71PPCh. 7 - Prob. 72PPCh. 7 - Predict which of the following substrates will...Ch. 7 - Prob. 74PPCh. 7 - Prob. 75PPCh. 7 - Prob. 76PPCh. 7 - Prob. 77PPCh. 7 - Prob. 78PPCh. 7 - Prob. 79PPCh. 7 - Prob. 80IPCh. 7 - Prob. 81IPCh. 7 - Prob. 82IPCh. 7 - Prob. 83IPCh. 7 - Prob. 84IPCh. 7 - Prob. 85IPCh. 7 - Prob. 87IPCh. 7 - Prob. 88IPCh. 7 - Prob. 89IPCh. 7 - Prob. 90IPCh. 7 - Prob. 91IPCh. 7 - Prob. 92IPCh. 7 - Prob. 94IPCh. 7 - Prob. 95IPCh. 7 - Prob. 96IPCh. 7 - Prob. 97IPCh. 7 - Prob. 98IPCh. 7 - For the following substitution reaction, which...Ch. 7 - Prob. 100IPCh. 7 - Prob. 101IPCh. 7 - Prob. 102CPCh. 7 - Prob. 104CPCh. 7 - Prob. 105CPCh. 7 - When 2-iodobutane is treated with a variety of...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY