Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
5th Edition
ISBN: 9780134689531
Author: Lee Johnson, Dean Riess, Jimmy Arnold
Publisher: PEARSON
bartleby

Videos

Textbook Question
Book Icon
Chapter 7.1, Problem 7E

In Exercises 7 12 , find a substitution x = Q y that diagonalizes the given quadratic form, where Q is orthogonal. Also, use Theorem 2 to classify the form as positive definite, positive semidefinite, and so on.

q ( x ) = 2 x 2 + 6 x y + 2 y 2

Blurred answer
Students have asked these similar questions
Find an orthogonal change of variables, x = Py, that transforms the quadratic form q(x) = x² + x²+2x1x2 − 2x2x3 into a quadratic form no cross-product form. Write the new quadratic form.
Consider the following quadratic form on R²: - 4608x₁² + 2/2/² 2 29 -X1 17 17 Q(x): = b) x₁ 2 a) Determine whether Q is positive or negative (semi)definite. b) Find a change of variables x = Py that converts Q to a form with no cross-product terms. and y2. c) write Q in terms of the new variables y1 In your formula, write 'y_1' and 'y_2' for y₁ and y2. Use the square root symbol '√' where needed to give an exact value for your answer. y1 0012 +400/Xx1 a) The quadratic form is c) Q(x) = 0 -x₂² +- -x1x2 17 Positive Definite Negative Definite Positive Semidefinite Negative Semidefinite Indefinite
Find an orthogonal change of variables that eliminates the cross product terms in the quadratic form Q, and express Q in terms of the new variables. 7x구 +6x2 + 5x금-4r x2 + 4x2.13 2 A substitution x = Py that eliminates cross-product terms is xį = -y1 +Y2 - V3, x2 = -z1 + zy2 +zV3, 2 1 X3 = -V1 + V2 – V3. The new quadratic form is 3y – 6y + 9y?. O A substitution x = Py that eliminates cross-product terms is x1 = - y1+ 2y2 - 2y3, X2 = - 2y1+ y2+ 2y3, X3 = 2y1+2y2 + y3- The new quadratic form is 3y + 6y + 9y. 2 1 + 2 2 A substitution x = Py that eliminates cross-product terms is x = - 2 X2 = 1 + + 1 V2 + zV3. The new quadratic form is 3y + 6y + 9y. X3 = 1 2 2 2 A substitution x = Py that eliminates cross-product terms is x = -I -2 -y3, x2 = -1 - 32 + 33, 2 1 X3 = 7Y1 + zV2 + V3. The new quadratic form is 6y+ 5y + 3y. O A substitution x = Py that eliminates cross-product terms is x1 = - y1- 2y2 - 2y3, X2 = - 2y1 – Y2+ 2y3, X3 = 2y1+2y2 + y3- The new quadratic form is 9y + 3y + 6y.

Chapter 7 Solutions

Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)

Ch. 7.1 - In Exercises 712, find a substitution x=Qy that...Ch. 7.1 - Prob. 12ECh. 7.1 - Prob. 13ECh. 7.1 - In Exercises 1320, find a substitution x=Qy where...Ch. 7.1 - In Exercises 1320, find a substitution x=Qy where...Ch. 7.1 - Prob. 16ECh. 7.1 - In Exercises 1320, find a substitution x=Qy where...Ch. 7.1 - Prob. 18ECh. 7.1 - In Exercises 1320, find a substitution x=Qy where...Ch. 7.1 - In Exercises 1320, find a substitution x=Qy where...Ch. 7.1 - Prob. 21ECh. 7.1 - Prob. 22ECh. 7.1 - Prove property b of Theorem 2. THEOREM 2 Let q(x)...Ch. 7.1 - Prob. 24ECh. 7.1 - Prob. 25ECh. 7.1 - Let A be an (nn) symmetric matrix and consider the...Ch. 7.1 - Prob. 27ECh. 7.1 - Let A be an (nn) symmetric matrix, and let S be an...Ch. 7.2 - Prob. 1ECh. 7.2 - Prob. 2ECh. 7.2 - Prob. 3ECh. 7.2 - Prob. 4ECh. 7.2 - Prob. 5ECh. 7.2 - Prob. 6ECh. 7.2 - Prob. 7ECh. 7.2 - Prob. 8ECh. 7.2 - Prob. 9ECh. 7.2 - Prob. 10ECh. 7.3 - In Exercise 1-10, reduce the given matrix to...Ch. 7.3 - In Exercise 1-10, reduce the given matrix to...Ch. 7.3 - In Exercise 1-10, reduce the given matrix to...Ch. 7.3 - In Exercise 1-10, reduce the given matrix to...Ch. 7.3 - In Exercise 1-10, reduce the given matrix to...Ch. 7.3 - In Exercise 1-10, reduce the given matrix to...Ch. 7.3 - In Exercise 1-10, reduce the given matrix to...Ch. 7.3 - In Exercise 1-10, reduce the given matrix to...Ch. 7.3 - In Exercise 1-10, reduce the given matrix to...Ch. 7.3 - In Exercise 1-10, reduce the given matrix to...Ch. 7.3 - Prob. 11ECh. 7.3 - Prob. 12ECh. 7.3 - Prob. 13ECh. 7.3 - Prob. 14ECh. 7.3 - Prob. 15ECh. 7.3 - Exercise 1522 deal with permutation matrices....Ch. 7.3 - Prob. 17ECh. 7.3 - Exercise 1522 deal with permutation matrices....Ch. 7.3 - Prob. 19ECh. 7.3 - Prob. 20ECh. 7.3 - Prob. 21ECh. 7.3 - Prob. 22ECh. 7.4 - Prob. 1ECh. 7.4 - Prob. 2ECh. 7.4 - Prob. 3ECh. 7.4 - Prob. 4ECh. 7.4 - Prob. 5ECh. 7.4 - Prob. 6ECh. 7.4 - Prob. 7ECh. 7.4 - Prob. 8ECh. 7.4 - Prob. 9ECh. 7.4 - Prob. 10ECh. 7.4 - Prob. 11ECh. 7.4 - Prob. 12ECh. 7.4 - Prob. 13ECh. 7.4 - Prob. 14ECh. 7.4 - Prob. 15ECh. 7.4 - Prob. 16ECh. 7.4 - Prob. 17ECh. 7.4 - Prob. 18ECh. 7.4 - Prob. 19ECh. 7.4 - Prob. 20ECh. 7.4 - Prob. 21ECh. 7.4 - Prob. 22ECh. 7.4 - Prob. 23ECh. 7.5 - Let Q=IbuuT be the Householder matrix defined by...Ch. 7.5 - Prob. 2ECh. 7.5 - Let Q=IbuuT be the Householder matrix defined by...Ch. 7.5 - Prob. 4ECh. 7.5 - Prob. 5ECh. 7.5 - Prob. 6ECh. 7.5 - Prob. 7ECh. 7.5 - Prob. 8ECh. 7.5 - For the given vectors v and w in Exercise 9-14,...Ch. 7.5 - Prob. 10ECh. 7.5 - Prob. 11ECh. 7.5 - For the given vectors v and w in Exercise 9-14,...Ch. 7.5 - Prob. 13ECh. 7.5 - Prob. 14ECh. 7.5 - Prob. 15ECh. 7.5 - Prob. 16ECh. 7.5 - Prob. 17ECh. 7.5 - In Exercises 15-20, find a Householder matrix Q...Ch. 7.5 - Prob. 19ECh. 7.5 - Prob. 20ECh. 7.5 - Prob. 21ECh. 7.5 - Prob. 22ECh. 7.5 - Consider the (nn) Householder matrix Q=IbuuT,...Ch. 7.5 - Prob. 24ECh. 7.5 - Consider a (44) matrix B of the form shown in (9),...Ch. 7.6 - Prob. 1ECh. 7.6 - Prob. 2ECh. 7.6 - Prob. 3ECh. 7.6 - Prob. 4ECh. 7.6 - Prob. 5ECh. 7.6 - Prob. 6ECh. 7.6 - Prob. 7ECh. 7.6 - Prob. 8ECh. 7.6 - Prob. 9ECh. 7.6 - Prob. 10ECh. 7.6 - Prob. 11ECh. 7.6 - Prob. 12ECh. 7.6 - Prob. 13ECh. 7.6 - Prob. 14ECh. 7.6 - Prob. 15ECh. 7.6 - Prob. 16ECh. 7.6 - Prob. 17ECh. 7.6 - Prob. 18ECh. 7.6 - Prob. 19ECh. 7.7 - Prob. 1ECh. 7.7 - Prob. 2ECh. 7.7 - Prob. 3ECh. 7.7 - Prob. 4ECh. 7.7 - Prob. 5ECh. 7.7 - Prob. 6ECh. 7.7 - Prob. 7ECh. 7.7 - Exercise 6 shows that eigenvectors of a symmetric...Ch. 7.8 - Find a full set of eigenvectors and generalized...Ch. 7.8 - Find a full set of eigenvectors and generalized...Ch. 7.8 - Solve x=Ax, x(0)=x0 by transforming A to...Ch. 7.8 - Prob. 4ECh. 7.8 - Prob. 5ECh. 7.8 - Prob. 6ECh. 7.8 - Prob. 7ECh. 7.8 - Prob. 8ECh. 7.SE - Prob. 1SECh. 7.SE - Prob. 2SECh. 7.SE - Prob. 3SECh. 7.SE - Prob. 4SECh. 7.SE - Prob. 5SECh. 7.CE - Let A be a (33) nonsingular matrix. Use the...Ch. 7.CE - Let A and B be similar (nn) matrices and let p(t)...Ch. 7.CE - Prob. 3CECh. 7.CE - Let A be a (33) matrix. a Use the Cayley-Hamilton...
Knowledge Booster
Background pattern image
Algebra
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Text book image
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Ring Examples (Abstract Algebra); Author: Socratica;https://www.youtube.com/watch?v=_RTHvweHlhE;License: Standard YouTube License, CC-BY
Definition of a Ring and Examples of Rings; Author: The Math Sorcerer;https://www.youtube.com/watch?v=8yItsdvmy3c;License: Standard YouTube License, CC-BY