
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 7.1, Problem 5P
To determine
Find the sum of a set of vectors and the angle in standard position.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Consider the truss shown in the figure, built from three struts attached by three pins. The truss supports a downward force of F = 1,080 N applied at the point B. Assume the mass of the truss is negligible, the pins are frictionless, and the supports at A and C are also frictionless.
01
F
B
nc
02
C
(a) Assuming 0₁ = 26.0° and 0 2 = 51.0°, what are n and n? (Enter the magnitudes in N.)
ΠΑ
пс
=
=
N
N
(b) The force any strut applies on a pin must be directed along the length of the strut as a force of tension or compression. What are the directions of the forces that the struts exert on the pins joining them?
strut AB on joint A:
---Select---
strut AB on joint B:
strut BC on joint B:
strut BC on joint C:
strut AC on joint A:
strut AC on joint C:
|---Select---
--Select---
--Select---
--Select---
|---Select---
✓
✓
✓
Find the force of tension or of compression (in N) in each of the three struts.
bar AB
N
N
bar BC
bar AC
N
The center of mass of the arm shown in the figure is at point A. Find the magnitudes (in N) of the tension force F+ and the force Fs which hold the arm in equilibrium. (Let = 22.5°.) Assume the weight of the arm is 34.8 N.
N
|Fsl
N
F
8.00 cm
-29.0 cm
i
Hi,
Please type the whole transcript correctly using comma and periods and as needed. Please mention the name of each scientist says. The picture of a video on YouTube has been uploaded down.
Chapter 7 Solutions
Applied Physics (11th Edition)
Ch. 7.1 - Find the sum of each set of forces acting at the...Ch. 7.1 - 703 N (right); 829 N (left); 125 N (left); 484 N...Ch. 7.1 - Forces of 225 N and 175 N act at the same point....Ch. 7.1 - Three forces with magnitudes of 225 N, 175 N, and...Ch. 7.1 - Prob. 5PCh. 7.1 - Find the sum of each set of vectors. Give angles...Ch. 7.1 - If forces of 1000N acting in a northerly direction...Ch. 7.1 - If two forces of 100N and 50.0 N, respectively,...Ch. 7.1 - Find the sum of each set of vectors. Give angles...Ch. 7.1 - Prob. 10P
Ch. 7.1 - Prob. 11PCh. 7.1 - Find the sum of each set of vectors. Give angles...Ch. 7.1 - Forces of F1 = 1150 N, F2 = 875 N, and F3 = 1450 N...Ch. 7.1 - Four forces, each of magnitude 2750 lb, act at the...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Five persons are having a tug-of-war. Kurt and...Ch. 7.2 - A certain wire can support 6450 lb before it...Ch. 7.2 - The frictional force of a loaded pallet in a...Ch. 7.2 - A bridge has a weight limit of 7.0 tons. How heavy...Ch. 7.2 - A tractor transmission weighing 260N and a...Ch. 7.2 - A skid loader lifts a compressor weighing 672 N...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - A rope is attached to two buildings and supports a...Ch. 7.2 - A rope is attached to two buildings and supports a...Ch. 7.2 - If the angles between the horizontal and the ropes...Ch. 7.2 - Find the tension in the horizontal supporting...Ch. 7.2 - Find the tension in the horizontal supporting...Ch. 7.2 - An automobile of mass 1550 kg is towed at a steady...Ch. 7.2 - A vehicle that weighs 16,200 N is parked on a 20.0...Ch. 7.2 - Find the tension in the cable and the compression...Ch. 7.2 - The crane shown in Fig. 7.26 is supporting a load...Ch. 7.2 - The crane shown in Fig. 7.27 is supporting a load...Ch. 7.3 - Given:F=16.0lbr=6.00ft=?Ch. 7.3 - Given:F=100Nr=0.420m=?Ch. 7.3 - Prob. 3PCh. 7.3 - Prob. 4PCh. 7.3 - Given:=65.4Nmr=35.0cmF=?Ch. 7.3 - Given:F=630Nr=74.0cm=?Ch. 7.3 - If the torque on a shaft of radius 2.37 cm is 38.0...Ch. 7.3 - If a force of 56.2 lb is applied to a torque...Ch. 7.3 - A motorcycle head bolt is torqued to 25.0 N m....Ch. 7.3 - A force of 112 N is applied to a shaft of radius...Ch. 7.3 - A torque of 175 lb ft is needed to free a large...Ch. 7.3 - A torque wrench reads 14.5 N m. If its length is...Ch. 7.3 - The torque on a shaft of radius 3.00 cm is 12.0 N...Ch. 7.3 - An engine bolt is torqued to 30.0 N m. If the...Ch. 7.3 - A mower bolt is torqued to 65.0 N m. If the length...Ch. 7.3 - An automobile bolt is torqued to 27.0 N m. If the...Ch. 7.3 - A torque wrench reads 25 lb ft. (a) If its length...Ch. 7.3 - If 13 N m of torque is applied to a bolt with an...Ch. 7.3 - If the torque required to loosen a nut on the...Ch. 7.3 - If the torque required to loosen a nut on the...Ch. 7.3 - A truck mechanic must loosen a rusted lug nut. If...Ch. 7.3 - An agricultural mechanic tries to loosen a nut on...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Prob. 9PCh. 7.4 - A 5000-lb truck is 20.0 ft from one end of a...Ch. 7.4 - Prob. 11PCh. 7.4 - An auto transmission of mass 165 kg is located...Ch. 7.4 - A bar 8.00 m long supports masses of 20.0 kg on...Ch. 7.4 - Two painters, each of mass 75.0 kg, stand on a...Ch. 7.4 - Two painters, one of mass 75.0 kg and the other...Ch. 7.4 - Two painters stand on a 10.00-m scaffold. One, of...Ch. 7.4 - An auto differential with a mass of 76.0 kg is...Ch. 7.4 - Prob. 18PCh. 7.5 - Solve for F1 : 30.0F1 = (14.0)(18.0) +...Ch. 7.5 - Solve for Fw : (12.0)(15.0) + 45.0Fw =...Ch. 7.5 - Two workers carry a uniform 15.0-ft plank that...Ch. 7.5 - Juan and Pablo carry a load weighing 720 N on a...Ch. 7.5 - A wooden beam is 3.30 m long and has its center of...Ch. 7.5 - An auto engine weighs 650lb and is located 4.00 ft...Ch. 7.5 - A bridge across a country stream weighs 89,200 N....Ch. 7.5 - A window washers scaffold 12.0 ft long and...Ch. 7.5 - A porch swing weighs 29.0 lb. It is 4.40 ft long...Ch. 7.5 - Prob. 10PCh. 7.5 - A bridge has a mass of 1.60 104 kg, is 21.0 m...Ch. 7.5 - A uniform steel beam is 5.00 m long and weighs 360...Ch. 7.5 - A wooden pole is 4.00 m long, weighs 315 N, and...Ch. 7.5 - A bridge has a mass of 2.60 104 kg, is 32.0 m...Ch. 7.5 - An auto engine of mass 295 kg is located 1.00 m...Ch. 7.5 - A 125-kg horizontal beam is supported at each end....Ch. 7.5 - Prob. 17PCh. 7.5 - The uniform bar in Fig. 7.49 is 5.00 m long and...Ch. 7.5 - Find the magnitude, direction, and placement (from...Ch. 7.5 - Find the magnitude, direction, and placement (from...Ch. 7 - Concurrent forces act at a. two or more different...Ch. 7 - The resultant force is a. the last force applied....Ch. 7 - A moving object a. can be in equilibrium. b. is...Ch. 7 - The study of an object in equilibrium is called a....Ch. 7 - Torque is a. applied force in rotational motion....Ch. 7 - The first condition of equilibrium states that a....Ch. 7 - In the second condition of equilibrium. a....Ch. 7 - The center of gravity of an object a. is always at...Ch. 7 - Is motion produced every time a force is applied...Ch. 7 - Prob. 10RQCh. 7 - Define equilibrium.Ch. 7 - In what direction does the force due to gravity...Ch. 7 - What may be said about concurrent forces whose sum...Ch. 7 - What is a force diagram?Ch. 7 - Is the length of the pedal necessarily the true...Ch. 7 - In your own words, explain the second condition of...Ch. 7 - What is the primary consideration in the selection...Ch. 7 - List three examples from daily life in which you...Ch. 7 - Is the center of gravity of an object always at...Ch. 7 - Prob. 20RQCh. 7 - Find the sum of the following forces acting at the...Ch. 7 - Forces of 275 lb and 225 lb act at the same point....Ch. 7 - Prob. 3RPCh. 7 - Prob. 4RPCh. 7 - Prob. 5RPCh. 7 - Forces of F1 = 1250 N, F2 = 625 N, and F3 = 1850 N...Ch. 7 - Eight people are involved in a tug-of-war. The...Ch. 7 - A bridge has a weight limit of 14.0 tons. What is...Ch. 7 - The x-components of three vectors are Fx, 375...Ch. 7 - If Wy=600N and Wx=900N, what are the magnitude and...Ch. 7 - Find forces F1 and F2 that produce equilibrium in...Ch. 7 - Prob. 12RPCh. 7 - Find the tension in the cable and the compression...Ch. 7 - Find the tension in each cable in Fig. 7.51.Ch. 7 - Find the tension in each cable in Fig. 7.52.Ch. 7 - Find the tension and the compression in Fig. 7.53.Ch. 7 - A man is changing a flat tire using a tire iron...Ch. 7 - A torque of 81.0 lb ft is produced by a torque arm...Ch. 7 - A hanging sign has mass 200kg. If the tension in...Ch. 7 - A scaffold supports a bricklayer and bricks...Ch. 7 - Two ladders at the ends of a scaffold support a...Ch. 7 - How far from the light end of a 68.0-cm bat would...Ch. 7 - A bridge has mass 8000kg. If a 3200-kg truck stops...Ch. 7 - If the truck in Problem 23 stops 7.00 m from one...Ch. 7 - A uniform 2.20-kg steel bar with length 2.70 m is...Ch. 7 - Find the vertical force needed to support the...Ch. 7 - A horizontal cable supports the boom of a crane....Ch. 7 - Archeologists in Egypt are attempting to open a...Ch. 7 - Sean and Greg are on a job site standing on two...Ch. 7 - Maria has severe arthritis and can apply a maximum...Ch. 7 - Kristas flagpole bracket is mounted at an angle of...Ch. 7 - Prob. 5AC
Knowledge Booster
Similar questions
- The triangular coil of wire in the drawing is free to rotate about an axis that is attached along side AC. The current in the loop is 4.64 A, and the magnetic field (parallel to the plane of the loop and side AB) is B = 2.1 T. (a) What is the magnetic moment of the loop, and (b) what is the magnitude of the net torque exerted on the loop by the magnetic field? 55.0° 109 B B 2.00 m.arrow_forwardThe triangular coil of wire in the drawing is free to rotate about an axis that is attached along side AC. The current in the loop is 4.64 A, and the magnetic field (parallel to the plane of the loop and side AB) is B = 2.1 T. (a) What is the magnetic moment of the loop, and (b) what is the magnitude of the net torque exerted on the loop by the magnetic field?arrow_forward12 volt battery in your car supplies 1700 Joules of energy to run the headlights during a particular nighttime drive. How much charge must have flowed through the battery to provide this much energy? Give your answer as the number of Coulombs.arrow_forward
- An x-y coordinate system is on the floor with a charge of +3.6 Coulombs at a location with coordinates x = -4.2 meters, y = 0 meters, and a charge of 1.2 Coulombs at a location with coordinates x = +7.5 meters, y = 0 meters. What is the potential (voltage) due to these charges, at location x = 0 meters, y = 9.3 meters on the floor using volts?arrow_forwardAn electron from location A (electric potential is +5.7 volts) to location B (electric potential is -12 volts). Calculate the change in the electron's electrostatic potential ENERGY when it moves from point A to point B. Give your answer as the number of Joules.arrow_forwardJack Sparrow and his crew snuck up on their enemies by submerging an upturned wooden rowboat and breathing in an air pocket in the upside-down boat's cavity. What stupidly large force would be needed to hold such a boat underwater? The total volume of the wood is 0.0686 m3 and the density of the boat is 380. kg/m3. It will hold 5.28 m3 of air which has a density of 1.20 kg/m3. The density of water is 1000. kg/m3.arrow_forward
- A high-speed lifting mechanism supports an 881 kg object with a steel cable that is 22.0 m long and 4.00 cm^2 in cross-sectional area. Young's modulus for steel is 20.0 ⋅10^10 Pa. The elongation of the cable is 2.377x10^-3 m. By what amount does the cable increase in length if the object is accelerated upwards at a rate of 3.11 m/s2?arrow_forwardLet us assume you are lifting out a 179 lb sheep. The density of the air around the balloon is 1.23 kg/m3 and the density of the air inside the balloon is 0.946 kg/m3. If the sheep accelerates upwards at 4.84 m/s2, what is the volume of the balloon? 1 kg = 2.20 lbsarrow_forwardAir streams past a small airplane's wings such that speed is 50 m/s over the top surface and 30m/s past the bottom. If the plane has a wing of 9m^2. Ignoring the small height difference find 1.The pressure difference between the top and bottom of the plane's wings. 2. What would be the gravitational pull on the plane assuming the plane is moving horizontally. .arrow_forward
- Draw a right-handed 3D Cartesian coordinate system (= x, y and z axes). Show a vector A with tail in the origin and sticking out in the positive x, y and z directions. Show the angles between A and the positive x, y and z axes, and call these angles α₁, α₂ and α3 Prove that Ax Acos α₁ Ay = Acos α₂ A₂- Acos α3arrow_forwardsolve for Voarrow_forwardDraw a third quadrant vector C. (remember that boldface characters represent vector quantities). Show the standard angle 0 for this vector (= angle that C makes with the positive x- axis). Also show the angle that C makes with the negative y-axis: call the latter angle 8. Finally, show the smallest angles that C makes with the positive x-axis and the positive y-axis: call these angles p1 and p2, repectively. a) Prove the following formulas for the components of C involving the standard angle (hint: start with the formulas for the components based on the angle & and then use (look up if necessary) co-function identities linking cosine and sine of 8 to sine and cosine of 0 since 8 = 3π/2-8 (this will switch cosine and sine around and eliminate - signs as well)) - C=Ccose C₁=Csine b) Prove the following formulas for the components of C: C=Ccosp1 C=Ccosp2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning