
Concept explainers
(a)
To find: The weight change for each subject.
(a)

Answer to Problem 38E
Solution: The table for weight change is as follows,
Weight before |
Weight after |
Weight change |
55.7 |
61.7 |
6 |
54.9 |
58.8 |
3.9 |
59.6 |
66 |
6.4 |
62.3 |
66.2 |
3.9 |
74.2 |
79 |
4.8 |
75.6 |
82.3 |
6.7 |
70.7 |
74.3 |
3.6 |
53.3 |
59.3 |
6 |
73.3 |
79.1 |
5.8 |
63.4 |
66 |
2.6 |
68.1 |
73.4 |
5.3 |
73.7 |
76.9 |
3.2 |
91.7 |
93.1 |
1.4 |
55.9 |
63 |
7.1 |
61.7 |
68.2 |
6.5 |
57.8 |
60.3 |
2.5 |
Explanation of Solution
Calculation:
To calculate weight change follow the below mentioned steps in Minitab;
Step 1: Enter the variable name as ‘Weight before’ in column C1 and enter the data of ‘weight before’ and enter the variable name as ‘Weight after’ in column C2 and enter the data of ‘Weight after’.
Step 2: Enter variable name as ‘Weight change’ in column C3.
Step 3: Go to
Step 4: In the dialog box that appears, select ‘Weight Change’ in ‘Store result in variable’.
Step 5: Enter 'Weight after'-'Weight before' in ‘Expression’. Click ‘OK’ on dialog box.
From Minitab result, the table for weight change is as follows,
Weight before |
Weight after |
Weight change |
55.7 |
61.7 |
6 |
54.9 |
58.8 |
3.9 |
59.6 |
66 |
6.4 |
62.3 |
66.2 |
3.9 |
74.2 |
79 |
4.8 |
75.6 |
82.3 |
6.7 |
70.7 |
74.3 |
3.6 |
53.3 |
59.3 |
6 |
73.3 |
79.1 |
5.8 |
63.4 |
66 |
2.6 |
68.1 |
73.4 |
5.3 |
73.7 |
76.9 |
3.2 |
91.7 |
93.1 |
1.4 |
55.9 |
63 |
7.1 |
61.7 |
68.2 |
6.5 |
57.8 |
60.3 |
2.5 |
(b)
Section 1:
To find: The
(b)
Section 1:

Answer to Problem 38E
Solution: The required mean is
Explanation of Solution
Calculation:
To calculate the mean of ‘weight change’ follow the below mentioned steps in Minitab;
Step 1: Follow the step 1 to 5 performed in part (a).
Step 2: Go to
Step 3: In dialog box that appears select ‘Weight change’ under the field marked as ‘Variables’ and click on ‘Statistics’.
Step 4: In dialog box that appears select ‘None’ and then ‘Mean’ and click OK twice.
From the Minitab output, the mean is
Section 2:
To find: The standard deviation of weight change.
Section 2:

Answer to Problem 38E
Solution: The required standard deviation is 1.746 kg.
Explanation of Solution
Calculation:
To calculate standard deviation of weight change follow the below mentioned steps in Minitab;
Step 1: Follow the step 1 to 5 performed in part (a).
Step 2: Go to
Step 3: In dialog box that appears select ‘Weight change’ under the field marked as ‘Variables’ and then click on ‘Statistics’.
Step 4: In dialog box that appears select ‘None’ and then ‘standard deviation’ and click ‘OK’ twice.
From the Minitab results, the standard deviation is 1.746.
(c)
Section 1:
To find: The standard error of the weight change.
(c)
Section 1:

Answer to Problem 38E
Solution: The standard error is 0.436 kg.
Explanation of Solution
Calculation:
To obtain the standard error of weight change follow the below mentioned steps in Minitab;
Step 1: Follow the step 1 to 5 performed in part (a).
Step 2: Go to
Step 3: In dialog box that appears select ‘Weight change’ under the field marked as ‘Variables’. Then click on ‘Statistics’.
Step 4: In dialog box that appears select ‘None’ and then ‘SE of mean’. Then click ‘Ok’ on both dialog box.
From Minitab result, the standard error is 0.436 kg.
Section 2:
To find: The margin of error for 95% confidence interval for mean weight change.
Section 2:

Answer to Problem 38E
Solution: The margin of error is 0.929 kg.
Explanation of Solution
Calculation:
The formula to calculate the margin of error is as follows,
Where
Hence the margin of error for mean weight change is 0.929 kg.
Section 3:
To find: The
Section 3:

Answer to Problem 38E
Solution: The required confidence interval is
Explanation of Solution
Calculation:
The confidence interval is an interval for which there are 95% chances that it contains the population parameter (population mean).
To calculate confidence interval, follow the below mentioned steps in Minitab;
Step 1: Enter the provided data into Minitab and enter variable name as ‘Weight change’
Step 2: Go to ‘Stat’ then point on ‘Basic Statistics’ and select ‘1-sample-t’.
Step 3: In the dialog box that appears select ‘Weight change’ under the field marked as ‘sample in columns’ and click on ‘option’.
Step 4: In the dialog box that appears, enter ‘95.0’ under the field marked as ‘confidence level’ and select ‘not equal’ under the field marked as ‘Alternative hypothesis’.
From Minitab results, 95% confidence interval in is
(d)
Section 1:
To find: The mean weight gain in pounds.
(d)
Section 1:

Answer to Problem 38E
Solution: The mean weight decrement in pounds is 10.4082 pounds.
Explanation of Solution
Calculation:
Consider
Where c is the constant.
Also,
So here,
Hence, the mean weight decrement in pounds will be 10.4082 pounds.
Section 2:
To find: The standard deviation of weight gains in pounds.
Section 2:

Answer to Problem 38E
Solution: The standard deviation of weight gain in pounds is 3.8412 pounds.
Explanation of Solution
Calculation:
Consider
Where c is the constant.
Also,
So here,
Hence, the standard deviation of weight gain in pounds will be 3.8412 pounds.
Section 3:
To find: The confidence interval of weight gain in pounds.
Section 3:

Answer to Problem 38E
Solution: The confidence interval of weight gain in pounds is
Explanation of Solution
Calculation:
The lower limit and the upper limit of the confidence interval are changed in pounds by multiplying them with 2.2. So the new confidence interval in pounds will be,
The lower limit,
The upper limit,
So the confidence interval will be
(e)
Section 1:
To explain: The hypothesis to test whether the weight change is equal to 16 lb.
(e)
Section 1:

Answer to Problem 38E
Solution: The null hypothesis is,
And the alternative hypothesis is,
Explanation of Solution
Against the alternative hypothesis which assumes that the mean weight
Section 2:
To find: The value of test statistic.
Section 2:

Answer to Problem 38E
Solution: The value of test statistic is
Explanation of Solution
Calculation:
To calculate the test statistic, follow the below mentioned steps in Minitab;
Step 1: Go to
Step 2: In the dialog box that appears click on ‘Summarized data’ Enter the values of sample size, mean, standard deviation. Then click on ‘Option’.
Step 3: Click on ‘Perform hypothesis test’ and enter ‘16’ under the field as ‘Hypothesized mean’.
Step 4: In the dialog box that appears, enter ‘95.0’ in confidence level and select ‘not equal’ under the field as ‘Alternative hypothesis’. Then click ‘Ok’.
From Minitab results, the value of test statistic is
Section 3:
To find: The P- value of the test statistic.
Section 3:

Answer to Problem 38E
Solution: The P- value is 0.000.
Explanation of Solution
Calculation:
To calculate the test statistic, follow the below mentioned steps in Minitab;
Step 1: Go to
Step 2: In the dialog box that appears click on ‘Summarized data’ Enter the values of sample size, mean, standard deviation. Then click on ‘Option’.
Step 3: Click on ‘Perform hypothesis test’ and enter ‘16’ under the field as ‘Hypothesized mean’.
Step 4: In the dialog box that appears, enter ‘95.0’ in confidence level and select ‘not equal’ under the field as ‘Alternative hypothesis’. Then click ‘Ok’.
From Minitab results, the P-value is 0.000
Section 4:
To explain: The test results.
Section 4:

Answer to Problem 38E
Solution: The null hypothesis is rejected and it is concluded that the mean weight gain is not 16 lb.
Explanation of Solution
(f)
To explain: The obtained results.
(f)

Answer to Problem 38E
Solution: The mean of ‘weight change’ is
Explanation of Solution
Want to see more full solutions like this?
Chapter 7 Solutions
Introduction to the Practice of Statistics 9E & LaunchPad for Introduction to the Practice of Statistics 9E (Twelve-Month Access)
- You find out that the dietary scale you use each day is off by a factor of 2 ounces (over — at least that’s what you say!). The margin of error for your scale was plus or minus 0.5 ounces before you found this out. What’s the margin of error now?arrow_forwardSuppose that Sue and Bill each make a confidence interval out of the same data set, but Sue wants a confidence level of 80 percent compared to Bill’s 90 percent. How do their margins of error compare?arrow_forwardSuppose that you conduct a study twice, and the second time you use four times as many people as you did the first time. How does the change affect your margin of error? (Assume the other components remain constant.)arrow_forward
- Out of a sample of 200 babysitters, 70 percent are girls, and 30 percent are guys. What’s the margin of error for the percentage of female babysitters? Assume 95 percent confidence.What’s the margin of error for the percentage of male babysitters? Assume 95 percent confidence.arrow_forwardYou sample 100 fish in Pond A at the fish hatchery and find that they average 5.5 inches with a standard deviation of 1 inch. Your sample of 100 fish from Pond B has the same mean, but the standard deviation is 2 inches. How do the margins of error compare? (Assume the confidence levels are the same.)arrow_forwardA survey of 1,000 dental patients produces 450 people who floss their teeth adequately. What’s the margin of error for this result? Assume 90 percent confidence.arrow_forward
- The annual aggregate claim amount of an insurer follows a compound Poisson distribution with parameter 1,000. Individual claim amounts follow a Gamma distribution with shape parameter a = 750 and rate parameter λ = 0.25. 1. Generate 20,000 simulated aggregate claim values for the insurer, using a random number generator seed of 955.Display the first five simulated claim values in your answer script using the R function head(). 2. Plot the empirical density function of the simulated aggregate claim values from Question 1, setting the x-axis range from 2,600,000 to 3,300,000 and the y-axis range from 0 to 0.0000045. 3. Suggest a suitable distribution, including its parameters, that approximates the simulated aggregate claim values from Question 1. 4. Generate 20,000 values from your suggested distribution in Question 3 using a random number generator seed of 955. Use the R function head() to display the first five generated values in your answer script. 5. Plot the empirical density…arrow_forwardFind binomial probability if: x = 8, n = 10, p = 0.7 x= 3, n=5, p = 0.3 x = 4, n=7, p = 0.6 Quality Control: A factory produces light bulbs with a 2% defect rate. If a random sample of 20 bulbs is tested, what is the probability that exactly 2 bulbs are defective? (hint: p=2% or 0.02; x =2, n=20; use the same logic for the following problems) Marketing Campaign: A marketing company sends out 1,000 promotional emails. The probability of any email being opened is 0.15. What is the probability that exactly 150 emails will be opened? (hint: total emails or n=1000, x =150) Customer Satisfaction: A survey shows that 70% of customers are satisfied with a new product. Out of 10 randomly selected customers, what is the probability that at least 8 are satisfied? (hint: One of the keyword in this question is “at least 8”, it is not “exactly 8”, the correct formula for this should be = 1- (binom.dist(7, 10, 0.7, TRUE)). The part in the princess will give you the probability of seven and less than…arrow_forwardplease answer these questionsarrow_forward
- Selon une économiste d’une société financière, les dépenses moyennes pour « meubles et appareils de maison » ont été moins importantes pour les ménages de la région de Montréal, que celles de la région de Québec. Un échantillon aléatoire de 14 ménages pour la région de Montréal et de 16 ménages pour la région Québec est tiré et donne les données suivantes, en ce qui a trait aux dépenses pour ce secteur d’activité économique. On suppose que les données de chaque population sont distribuées selon une loi normale. Nous sommes intéressé à connaitre si les variances des populations sont égales.a) Faites le test d’hypothèse sur deux variances approprié au seuil de signification de 1 %. Inclure les informations suivantes : i. Hypothèse / Identification des populationsii. Valeur(s) critique(s) de Fiii. Règle de décisioniv. Valeur du rapport Fv. Décision et conclusion b) A partir des résultats obtenus en a), est-ce que l’hypothèse d’égalité des variances pour cette…arrow_forwardAccording to an economist from a financial company, the average expenditures on "furniture and household appliances" have been lower for households in the Montreal area than those in the Quebec region. A random sample of 14 households from the Montreal region and 16 households from the Quebec region was taken, providing the following data regarding expenditures in this economic sector. It is assumed that the data from each population are distributed normally. We are interested in knowing if the variances of the populations are equal. a) Perform the appropriate hypothesis test on two variances at a significance level of 1%. Include the following information: i. Hypothesis / Identification of populations ii. Critical F-value(s) iii. Decision rule iv. F-ratio value v. Decision and conclusion b) Based on the results obtained in a), is the hypothesis of equal variances for this socio-economic characteristic measured in these two populations upheld? c) Based on the results obtained in a),…arrow_forwardA major company in the Montreal area, offering a range of engineering services from project preparation to construction execution, and industrial project management, wants to ensure that the individuals who are responsible for project cost estimation and bid preparation demonstrate a certain uniformity in their estimates. The head of civil engineering and municipal services decided to structure an experimental plan to detect if there could be significant differences in project evaluation. Seven projects were selected, each of which had to be evaluated by each of the two estimators, with the order of the projects submitted being random. The obtained estimates are presented in the table below. a) Complete the table above by calculating: i. The differences (A-B) ii. The sum of the differences iii. The mean of the differences iv. The standard deviation of the differences b) What is the value of the t-statistic? c) What is the critical t-value for this test at a significance level of 1%?…arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





