In Exercises 30 through 32, consider the dynamical system x → ( t + 1 ) = [ 1.1 0 0 λ ] x → ( t ) . Sketch a phase portrait of this system for the given values of λ : 31. λ = 1
In Exercises 30 through 32, consider the dynamical system x → ( t + 1 ) = [ 1.1 0 0 λ ] x → ( t ) . Sketch a phase portrait of this system for the given values of λ : 31. λ = 1
Solution Summary: The author analyzes the phase portrait for the given dynamic system. The eigen values can be found as shown.
In Exercises 30 through 32, consider the dynamical system
x
→
(
t
+
1
)
=
[
1.1
0
0
λ
]
x
→
(
t
)
. Sketch a phase portrait of this system for the given values of
λ
:
For each graph below, state whether it represents a function.
Graph 1
24y
Graph 2
Graph 3
4
2
-8
-6 -4
-2
-2
2 4 6
Function?
○ Yes
○ No
○ Yes
○ No
Graph 4
Graph 5
8
Function?
Yes
No
Yes
No
-2.
○ Yes
○ No
Graph 6
4
+
2
4
-8 -6 -4 -2
2 4 6
8
Yes
-4++
No
Practice
k Help
ises
A
96
Anewer The probability that you get a sum of at least 10 is
Determine the number of ways that the specified event can occur when
two number cubes are rolled.
1. Getting a sum of 9 or 10
3. Getting a sum less than 5
2. Getting a sum of 6 or 7
4. Getting a sum that is odd
Tell whether you would use the addition principle or the multiplication
principle to determine the total number of possible outcomes for the
situation described.
5. Rolling three number cubes
6. Getting a sum of 10 or 12 after rolling three number cubes
A set of playing cards contains four groups of cards designated by color
(black, red, yellow, and green) with cards numbered from 1 to 14 in each
group. Determine the number of ways that the specified event can occur
when a card is drawn from the set.
7. Drawing a 13 or 14
9. Drawing a number less than 4
8. Drawing a yellow or green card
10. Drawing a black, red, or green car
The spinner is divided into equal parts.
Find the specified…
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Introduction: MARKOV PROCESS And MARKOV CHAINS // Short Lecture // Linear Algebra; Author: AfterMath;https://www.youtube.com/watch?v=qK-PUTuUSpw;License: Standard Youtube License
Stochastic process and Markov Chain Model | Transition Probability Matrix (TPM); Author: Dr. Harish Garg;https://www.youtube.com/watch?v=sb4jo4P4ZLI;License: Standard YouTube License, CC-BY