
Electric Circuits Plus Mastering Engineering with Pearson eText 2.0 - Access Card Package (11th Edition) (What's New in Engineering)
11th Edition
ISBN: 9780134814117
Author: NILSSON, James W., Riedel, Susan
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 7.1, Problem 2AP
a)
To determine
Find the value of
b)
To determine
Find the percentage of initial energy stored in inductor dissipated in
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
3. You have come to encounter an LTI system. You have no idea how the system
behaves. So, you decide to drive the system with a particular input and measure the
output. When you put the input u(t) = et 1(t), you find that the output y(t) =
(1-e) 1(t). You can assume zero initial conditions. Now, find the transfer
function of the system.
1. Consider the following LTI system.
d²y
dy
du
+7
+6y=
--
+2u,
t≥0
dt²
dt
dt
a) What is the impulse response of the system? Recall, h(t) = L-¹(H(s)).
b) What are poles and zeros of the system?
c) Suppose the initial condition of the system is y(0) = 1 and y'(0) = 4. What
is the zero-input response of the system?
d) Consider an input u(t) = (1 + et) 1(t) to the system. What is the zero-state
response of the system for this input?
e) Suppose, the initial condition was y(0) = -2 and y'(0) = -8 and the input is
u(t)=(1+e) 1(t). What will be the total response of the system? You
should be able to answer this using the linearity property of the system and your
answers in part b and part c without taking any inverse Laplace transform.
Given a normally distributed variable X with mean 4 and standard deviation 2, fi
(a) P(X5). (d) P(1.8
Chapter 7 Solutions
Electric Circuits Plus Mastering Engineering with Pearson eText 2.0 - Access Card Package (11th Edition) (What's New in Engineering)
Ch. 7.1 - The switch in the circuit shown has been closed...Ch. 7.1 - Prob. 2APCh. 7.2 - Prob. 3APCh. 7.2 - Prob. 4APCh. 7.3 - Prob. 5APCh. 7.3 - Prob. 6APCh. 7.4 - Prob. 7APCh. 7.4 - Prob. 8APCh. 7.5 - Prob. 9APCh. 7.5 - Prob. 10AP
Ch. 7.7 - There is no energy stored in the capacitor at the...Ch. 7.7 - Prob. 12APCh. 7 - Prob. 1PCh. 7 - In the circuit shown in Fig. P 7.2, the switch...Ch. 7 - Prob. 3PCh. 7 - The switch shown in Fig. P 7.4 has been open for a...Ch. 7 - Prob. 5PCh. 7 - For the circuit of Fig. P 7.5, what percentage of...Ch. 7 - Prob. 7PCh. 7 - In the circuit in Fig. P 7.8, the voltage and...Ch. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 -
The switch in the circuit seen in Fig. P 7.11 has...Ch. 7 - In the circuit in Fig. P 7.11, let Ig represent...Ch. 7 - The two switches in the circuit seen in Fig. P...Ch. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Prob. 16PCh. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - For the circuit seen in Fig. P 7.19, find
the...Ch. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - The switch in the circuit in Fig. P 7.25 is closed...Ch. 7 - In the circuit shown in Fig. P 7.26, both switches...Ch. 7 -
In the circuit in Fig. P 7.27 the voltage and...Ch. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - The switch in the circuit seen in Fig. P 7.30 has...Ch. 7 - In Problem 7.30 how many microjoules of energy are...Ch. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - The switch in the circuit shown in Fig. P 7.38 has...Ch. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - For the circuit in Fig. P 7.4, find (in...Ch. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - The switch in the circuit of Fig. P 7.55 has been...Ch. 7 - The switch in the circuit seen in Fig. P 7.56 has...Ch. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - The switch in the circuit shown in Fig. P 7.61 has...Ch. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67PCh. 7 - Prob. 68PCh. 7 - Prob. 69PCh. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - Prob. 73PCh. 7 - For the circuit in Fig. P 7.73, how many...Ch. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - Prob. 79PCh. 7 - Prob. 80PCh. 7 - Prob. 81PCh. 7 - Prob. 82PCh. 7 - Prob. 84PCh. 7 - Prob. 85PCh. 7 - Prob. 86PCh. 7 - Prob. 87PCh. 7 - Prob. 88PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - Prob. 95PCh. 7 - Prob. 100PCh. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Prob. 103PCh. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107P
Knowledge Booster
Similar questions
- Task 2 (2 credits) Consider the circuit in the figure below. The Zener diode has a Zener voltage of 15 V. What is the voltage Vout? 22 V 4.0 ΚΩ Vout 3.0 ΚΩarrow_forwardGiven a normally distributed variable X with mean 4 and standard deviation 2, fi (a) P(X5). (d) P(1.8arrow_forwardGiven a normally distributed variable X with mean 4 and standard deviation 2, fi (a) P(X5). (d) P(1.8arrow_forwardQ1. The three-phase full-wave converter in Figure shown is operated from a three phase Y-connected supply. Sketch the output voltages appeared at the load for firing angle 15°. I need Sketch an Ven จ T1 Q Yi₁ = I₂ a ia = is T₁ T3 T₂ Vbn b ib Load Highly inductive load ▲ T6 T₂ iT4 On T5, T6 T6, T₁ T2, T3 T3, T4 T4, T5 T5, T6 ཅ 0 T₁ الاسم T₁ Is wtarrow_forwardQ4. For the control system is shown in Figure 2, by using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the هندسة الكم following system, then compare your results for all types controllers? R(S) K C(s) S3+4S² +11S Figure (2)arrow_forwardQ1. Consider the unity feedback control system whose open-loop transfer function is: G(s): = 40(S+2) s(s+3)(s+1)(s + 10) ELECTRIC Ziegler-Nichols, By using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then comp controllers? PARTME then compare your results for all types GINEARIarrow_forwardQ2. Consider the control system whose open-loop transfer function is: G(s) = K قسم s (s2 +4.8s + 12.6) By using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then compare your results for all types controllers?arrow_forwardQ3. For the control system is shown in Figure 1, by using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then compare your results for all types controllers? R(s) + C(s) 1 GES s(s+3)(s+6) PID controller Figure (1) INarrow_forwardUse Newton-Raphson method to solve the system x³+y-1=0 4 y³-x+1=0 with the starting value (xo,yo) = (1,0). Take n=4.arrow_forwardUse Newton-Raphson method to solve the system 3x²y - 10x+7=0 y²-5y+4=0 With the starting value (xo, yo) = (0.5, 0.5). Take n = 1arrow_forwardUse Newton-Raphson method to solve the system x²-2xy+0.5= 0 x²+4y² 40 - with the starting value (xo, yo) = (2, 0.25) and two iteration number.arrow_forwardProblem 7 [2.5 pts] The response of an LTI system to u[n+2] appears to be the following sequence. -3-2-101234 Do we have enough information to determine the impulse response of this system? If so, derive it and plot it. If not, explain why.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill EducationFundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,