
(a)
The mass flow rate of the refrigerant.
(a)

Explanation of Solution
Given:
The refrigerated temperature is
The cooling water inlet temperature
The cooling water outlet temperature
The mass flow rate of the water
The inlet and outlet pressure of the condenser is 1.2 MPa.
The power input consumed by compressor
Calculation:
First find out the state properties of the system as shown below:
From the Table A-13, “Superheated refrigerant R-134a” obtain the value of enthalpy of the refrigerant at the inlet of the condenser at the 1.2 MPa of pressure and
At state 2, the refrigerant is subcooled by
Here, the temperature leave from the condenser is
From the Table A-13, “Superheated refrigerant R-134a” obtain the value of temperature of the refrigerant at the inlet of the condenser at the 1.2 MPa of pressure as,
Calculate the exit temperature
Refer to Table A-11, “Saturated refrigerant R-134a”, obtain the below exit enthalpy of the condenser at compressed liquid state on the basis of exit temperature of
S. No |
Temperature, |
enthalpy of vaporization |
1 | ||
2 | ||
3 |
Calculate exit enthalpy of the condenser using interpolation method.
Substitute
From above calculation the exit enthalpy of the condenser at compressed liquid state on the basis of exit temperature of
Repeat the above Equation (II) to obtain the value of enthalpy of saturated liquid that entering the inlet of the condenser at the
Repeat the above Equation (IV) to obtain the value of enthalpy of saturated liquid which is leaving the condenser at the
Calculate the rate of heat transferred to the water.
Calculate the mass flow rate of a refrigerant.
Thus, the mass flow rate of the refrigerant is
(b)
The refrigeration load of the refrigerator.
(b)

Explanation of Solution
Calculate the refrigeration load of the refrigerator.
Thus, the refrigeration load of the refrigerator is
(c)
The COP of a reversible refrigerator operating between the same temperature limits.
(c)

Explanation of Solution
Determine the coefficient of performance of the refrigerator.
Thus, the COP of a reversible refrigerator operating between the same temperature limits is
(d)
The minimum power input to the compressor.
(d)

Explanation of Solution
Calculate the maximum coefficient of performance of the reversible refrigerator operating between the same temperature limits.
Here, the temperature of higher temperature body is
Calculate the minimum power input to the condenser for the same refrigerator load.
Thus, the minimum power input to the compressor is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
- please solve this problems follow what the question are asking to do please show me step by steparrow_forwardplease first write the line action find the forces and them solve the problem step by steparrow_forwardplease solve this problem what the problem are asking to solve please explain step by step and give me the correct answerarrow_forward
- please help me to solve this problem step by steparrow_forwardplease help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forwardplease solve this problem for me the best way that you can explained to solve please show me the step how to solvearrow_forward
- plese solbe this problem and give the correct answer solve step by step find the forces and line actionarrow_forwardplease help me to solve this problems first write the line of action and them find the forces {fx=0: fy=0: mz=0: and them draw the shear and bending moment diagram. please explain step by steparrow_forwardplease solve this problem step by step like human and give correct answer step by steparrow_forward
- PROBLEM 11: Determine the force, P, that must be exerted on the handles of the bolt cutter. (A) 7.5 N (B) 30.0 N (C) 52.5 N (D) 300 N (E) 325 N .B X 3 cm E 40 cm cm F = 1000 N 10 cm 3 cm boltarrow_forwardUsing the moment-area theorems, determine a) the rotation at A, b) the deflection at L/2, c) the deflection at L/4. (Hint: Use symmetry for Part a (θA= - θB, or θC=0), Use the rotation at A for Parts b and c. Note that all deformations in the scope of our topics are small deformation and for small θ, sinθ=θ).arrow_forwardDistilled water is being cooled by a 20% propylene glycol solution in a 1-1/U counter flow plate and frame heat exchanger. The water enters the heat exchanger at 50°F at a flow rate of 86,000 lbm/h. For safety reasons, the water outlet temperature should never be colder than 35°F. The propylene glycol solution enters the heat exchanger at 28°F with a flow rate of 73,000 lbm/h. The port distances on the heat exchanger are Lv = 35 in and Lh = 18 in. The plate width is Lw = 21.5 2 in. The plate thickness is 0.04 in with a plate pitch of 0.12 in. The chevron angle is 30° and the plate enlargement factor is 1.17. All ports have a 2 in diameter. The fouling factor of the propylene glycol solution can be estimated as 2 ×10−5 h-ft2-°F/Btu. a. Determine the maximum number of plates the heat exchanger can have while ensuring that the water outlet temperature never drops below 35°F. b. Determine the thermal and hydraulic performance of the heat exchanger with the specified number of plates.…arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





