
Thomas' Calculus: Early Transcendentals Plus Mymathlab With Pearson Etext -- Access Card Package (14th Edition) (hass, Heil & Weir, Thomas' Calculus Series)
14th Edition
ISBN: 9780134665573
Author: Joel R. Hass, Christopher D. Heil, Maurice D. Weir
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 8PE
To determine
Calculate the value of the integral function.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Under certain conditions, the number of diseased cells N(t) at time t increases at a rate N'(t) = Aekt, where A is the rate of increase at time 0 (in cells per day) and k is a constant.
(a) Suppose A = 60, and at 3 days, the cells are growing at a rate of 180 per day. Find a formula for the number of cells after t days, given that 200 cells are present at t = 0.
(b) Use your answer from part (a) to find the number of cells present after 8 days.
(a) Find a formula for the number of cells, N(t), after t days.
N(t) =
(Round any numbers in exponents to five decimal places. Round all other numbers to the nearest tenth.)
The marginal revenue (in thousands of dollars) from the sale of x handheld gaming devices is given by the following function.
R'(x) = 4x (x² +26,000)
2
3
(a) Find the total revenue function if the revenue from 125 devices is $17,939.
(b) How many devices must be sold for a revenue of at least $50,000?
(a) The total revenue function is R(x) =
(Round to the nearest integer as needed.)
given that the revenue from 125 devices is $17,939.
Use substitution to find the indefinite integral.
S
2u
√u-4
-du
Describe the most appropriate substitution case and the values of u and du. Select the correct choice below and fill in the answer boxes within your choice.
A. Substitute u for the quantity in the numerator. Let v =
, so that dv = ( ) du.
B. Substitute u for the quantity under the root. Let v = u-4, so that dv = (1) du.
C. Substitute u for the quantity in the denominator. Let v =
Use the substitution to evaluate the integral.
so that dv=
'
(
du.
2u
-du=
√√u-4
Chapter 7 Solutions
Thomas' Calculus: Early Transcendentals Plus Mymathlab With Pearson Etext -- Access Card Package (14th Edition) (hass, Heil & Weir, Thomas' Calculus Series)
Ch. 7.1 - Evaluate the integrals in Exercises 146. 1. 32dxxCh. 7.1 - Evaluate the integrals in Exercises 1–46.
2.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
3.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
4.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
5.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
6.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
7.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
8.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
9.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
10.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
11.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
12.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
13.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
14. ∫...Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
15.
Ch. 7.1 - Prob. 16ECh. 7.1 - Evaluate the integrals in Exercises 1–46.
17.
Ch. 7.1 - Prob. 18ECh. 7.1 - Evaluate the integrals in Exercises 1–46.
19.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
20.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
21. ∫...Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
22. ∫...Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
23.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
24.
Ch. 7.1 - Prob. 25ECh. 7.1 - Prob. 26ECh. 7.1 - Evaluate the integrals in Exercises 1–46.
27.
Ch. 7.1 - Prob. 28ECh. 7.1 - Evaluate the integrals in Exercises 1–46.
29.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
30.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
31.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
32.
Ch. 7.1 - Prob. 33ECh. 7.1 - Prob. 34ECh. 7.1 - Evaluate the integrals in Exercises 1–46.
35.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
36.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
37.
Ch. 7.1 - Evaluate the integrals in Exercises 1–46.
38.
Ch. 7.1 - Prob. 39ECh. 7.1 - Prob. 40ECh. 7.1 - Evaluate the integrals in Exercises 1–46.
41.
Ch. 7.1 - Prob. 42ECh. 7.1 - Prob. 43ECh. 7.1 - Prob. 44ECh. 7.1 - Prob. 45ECh. 7.1 - Evaluate the integrals in Exercises 1-46.
46.
Ch. 7.1 - Solve the initial value problems in Exercises...Ch. 7.1 - Prob. 48ECh. 7.1 - Prob. 49ECh. 7.1 - Prob. 50ECh. 7.1 - Prob. 51ECh. 7.1 - Prob. 52ECh. 7.1 - Prob. 53ECh. 7.1 - Prob. 54ECh. 7.1 - Prob. 55ECh. 7.1 - Prob. 56ECh. 7.1 - Prob. 57ECh. 7.1 - The linearization of ex at x = 0
Derive the linear...Ch. 7.1 - Show that for any number a > 1
as suggested by...Ch. 7.1 - Prob. 60ECh. 7.1 - Prob. 61ECh. 7.1 - Prob. 62ECh. 7.1 - Prob. 63ECh. 7.1 - Prob. 64ECh. 7.1 - Prob. 65ECh. 7.1 - Prob. 66ECh. 7.1 - Prob. 67ECh. 7.1 - Prob. 68ECh. 7.1 - Prob. 69ECh. 7.1 - Prob. 70ECh. 7.1 - Prob. 71ECh. 7.1 - Prob. 72ECh. 7.1 - Prob. 73ECh. 7.2 - In Exercises 14, show that each function y =...Ch. 7.2 - Prob. 2ECh. 7.2 - Prob. 3ECh. 7.2 - Prob. 4ECh. 7.2 - Prob. 5ECh. 7.2 - Prob. 6ECh. 7.2 - Prob. 7ECh. 7.2 - Prob. 8ECh. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Prob. 10ECh. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Prob. 18ECh. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Solve the differential equation in Exercises...Ch. 7.2 - Prob. 22ECh. 7.2 - Human evolution continues The analysis of tooth...Ch. 7.2 - Atmospheric pressure Earth’s atmospheric pressure...Ch. 7.2 - Prob. 25ECh. 7.2 - The inversion of sugar The processing of raw sugar...Ch. 7.2 - Prob. 27ECh. 7.2 - Voltage in a discharging capacitor Suppose that...Ch. 7.2 - Cholera bacteria Suppose that the bacteria in a...Ch. 7.2 - Growth of bacteria A colony of bacteria is grown...Ch. 7.2 - Prob. 31ECh. 7.2 - Drug concentration An antibiotic is administered...Ch. 7.2 - Prob. 33ECh. 7.2 - Prob. 34ECh. 7.2 - Prob. 35ECh. 7.2 - Prob. 36ECh. 7.2 - Prob. 37ECh. 7.2 - Polonium-210 The half-life of polonium is 139...Ch. 7.2 - Prob. 39ECh. 7.2 - Prob. 40ECh. 7.2 - Prob. 41ECh. 7.2 - A beam of unknown temperature An aluminum beam was...Ch. 7.2 - Surrounding medium of unknown temperature A pan of...Ch. 7.2 - Silver cooling in air The temperature of an ingot...Ch. 7.2 - Prob. 45ECh. 7.2 - Prob. 46ECh. 7.2 - Prob. 47ECh. 7.2 - Prob. 48ECh. 7.2 - Prob. 49ECh. 7.2 - Prob. 50ECh. 7.3 - Each of Exercises 1–4 gives a value of sinh x or...Ch. 7.3 - Prob. 2ECh. 7.3 - Prob. 3ECh. 7.3 - Prob. 4ECh. 7.3 - Prob. 5ECh. 7.3 - Prob. 6ECh. 7.3 - Prob. 7ECh. 7.3 - Prob. 8ECh. 7.3 - Prob. 9ECh. 7.3 - Prob. 10ECh. 7.3 - Prove the identities
sinh (x + y) = sinh x cosh y...Ch. 7.3 - Prob. 12ECh. 7.3 - Prob. 13ECh. 7.3 - Prob. 14ECh. 7.3 - Prob. 15ECh. 7.3 - Prob. 16ECh. 7.3 - Prob. 17ECh. 7.3 - Prob. 18ECh. 7.3 - Prob. 19ECh. 7.3 - Prob. 20ECh. 7.3 - Prob. 21ECh. 7.3 - In Exercises 13–24, find the derivative of y with...Ch. 7.3 - In Exercises 13–24, find the derivative of y with...Ch. 7.3 - Prob. 24ECh. 7.3 - Prob. 25ECh. 7.3 - Prob. 26ECh. 7.3 - Prob. 27ECh. 7.3 - Prob. 28ECh. 7.3 - Prob. 29ECh. 7.3 - Prob. 30ECh. 7.3 - In Exercises 25–36, find the derivative of y with...Ch. 7.3 - Prob. 32ECh. 7.3 - In Exercises 25–36, find the derivative of y with...Ch. 7.3 - Prob. 34ECh. 7.3 - In Exercises 25–36, find the derivative of y with...Ch. 7.3 - Prob. 36ECh. 7.3 - Verify the integration formulas in Exercises...Ch. 7.3 - Verify the integration formulas in Exercises...Ch. 7.3 - Verify the integration formulas in Exercises...Ch. 7.3 - Verify the integration formulas in Exercises...Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
41.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
42.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
43.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
44.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
45.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
46.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
47.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
48.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
49.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
50.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
51.
Ch. 7.3 - Evaluate the integrals in Exercises 41-60.
52.
Ch. 7.3 - Evaluate the integrals in Exercises 41–60.
53.
Ch. 7.3 - Prob. 54ECh. 7.3 - Prob. 55ECh. 7.3 - Prob. 56ECh. 7.3 - Evaluate the integrals in Exercises 41–60.
57.
Ch. 7.3 - Prob. 58ECh. 7.3 - Prob. 59ECh. 7.3 - Prob. 60ECh. 7.3 - Prob. 61ECh. 7.3 - Prob. 62ECh. 7.3 - Prob. 63ECh. 7.3 - Prob. 64ECh. 7.3 - Prob. 65ECh. 7.3 - Prob. 66ECh. 7.3 - Evaluate the integrals in Exercises 67–74 in terms...Ch. 7.3 - Prob. 68ECh. 7.3 - Prob. 69ECh. 7.3 - Prob. 70ECh. 7.3 - Evaluate the integrals in Exercises 67–74 in terms...Ch. 7.3 - Prob. 72ECh. 7.3 - Prob. 73ECh. 7.3 - Prob. 74ECh. 7.3 - Prob. 75ECh. 7.3 - Prob. 76ECh. 7.3 - Prob. 77ECh. 7.3 - Prob. 78ECh. 7.3 - Prob. 79ECh. 7.3 - Prob. 80ECh. 7.3 - Prob. 81ECh. 7.3 - Prob. 82ECh. 7.3 - Prob. 83ECh. 7.3 - Prob. 84ECh. 7.3 - Prob. 85ECh. 7.3 - Prob. 86ECh. 7.4 - Which of the following functions grow faster than...Ch. 7.4 - Prob. 2ECh. 7.4 - Prob. 3ECh. 7.4 - Prob. 4ECh. 7.4 - Prob. 5ECh. 7.4 - Prob. 6ECh. 7.4 - Prob. 7ECh. 7.4 - Prob. 8ECh. 7.4 - Prob. 9ECh. 7.4 - Prob. 10ECh. 7.4 - Prob. 11ECh. 7.4 - Prob. 12ECh. 7.4 - Prob. 13ECh. 7.4 - Prob. 14ECh. 7.4 - Prob. 15ECh. 7.4 - Prob. 16ECh. 7.4 - Prob. 17ECh. 7.4 - Prob. 18ECh. 7.4 - Prob. 19ECh. 7.4 - The function ex outgrows any polynomial Show that...Ch. 7.4 - Prob. 21ECh. 7.4 - The function ln x grows slower than any...Ch. 7.4 - Suppose you have three different algorithms for...Ch. 7.4 - Prob. 24ECh. 7.4 - Prob. 25ECh. 7.4 - Prob. 26ECh. 7 - Prob. 1GYRCh. 7 - Prob. 2GYRCh. 7 - Prob. 3GYRCh. 7 - Prob. 4GYRCh. 7 - Prob. 5GYRCh. 7 - Prob. 6GYRCh. 7 - Prob. 7GYRCh. 7 - Prob. 8GYRCh. 7 - Prob. 9GYRCh. 7 - Prob. 10GYRCh. 7 - Prob. 11GYRCh. 7 - Prob. 12GYRCh. 7 - Prob. 13GYRCh. 7 - Prob. 14GYRCh. 7 - Prob. 15GYRCh. 7 - Prob. 1PECh. 7 - Prob. 2PECh. 7 - Prob. 3PECh. 7 - Prob. 4PECh. 7 - Prob. 5PECh. 7 - Prob. 6PECh. 7 - Prob. 7PECh. 7 - Prob. 8PECh. 7 - Prob. 9PECh. 7 - Prob. 10PECh. 7 - Prob. 11PECh. 7 - Prob. 12PECh. 7 - Prob. 13PECh. 7 - Prob. 14PECh. 7 - Prob. 15PECh. 7 - Prob. 16PECh. 7 - Prob. 17PECh. 7 - Prob. 18PECh. 7 - Prob. 19PECh. 7 - Prob. 20PECh. 7 - Prob. 21PECh. 7 - Prob. 22PECh. 7 - Prob. 23PECh. 7 - Prob. 24PECh. 7 - Prob. 25PECh. 7 - Prob. 26PECh. 7 - Prob. 27PECh. 7 - Prob. 28PECh. 7 - Prob. 29PECh. 7 - Prob. 30PECh. 7 - Prob. 31PECh. 7 - Prob. 32PECh. 7 - Prob. 33PECh. 7 - Prob. 34PECh. 7 - Prob. 35PECh. 7 - Prob. 36PECh. 7 - Prob. 37PECh. 7 - In Exercises 35–38, solve the initial value...Ch. 7 - Prob. 39PECh. 7 - Prob. 40PECh. 7 - Prob. 41PECh. 7 - Prob. 42PECh. 7 - Prob. 1AAECh. 7 - Prob. 2AAECh. 7 - Prob. 3AAECh. 7 - Prob. 4AAECh. 7 - Prob. 5AAECh. 7 - Prob. 6AAECh. 7 - Prob. 7AAECh. 7 - Prob. 8AAECh. 7 - Prob. 9AAECh. 7 - Prob. 10AAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Use substitution to find the indefinite integral. Зи u-8 du Describe the most appropriate substitution case and the values of u and du. Select the correct choice below and fill in the answer boxes within your choice. A. Substitute u for the quantity in the numerator. Let v = , so that dv = ( ( ) du. B. Substitute u for the quantity under the root. Let v = u-8, so that dv = (1) du. C. Substitute u for the quantity in the denominator. Let v = so that dv= ( ) du. Use the substitution to evaluate the integral. S Зи -du= u-8arrow_forwardFind the derivative of the function. 5 1 6 p(x) = -24x 5 +15xarrow_forward∞ 2n (4n)! Let R be the radius of convergence of the series -x2n. Then the value of (3" (2n)!)² n=1 sin(2R+4/R) is -0.892 0.075 0.732 -0.812 -0.519 -0.107 -0.564 0.588arrow_forward
- Find the cost function if the marginal cost function is given by C'(x) = x C(x) = 2/5 + 5 and 32 units cost $261.arrow_forwardFind the cost function if the marginal cost function is C'(x) = 3x-4 and the fixed cost is $9. C(x) = ☐arrow_forwardFor the power series ∞ (−1)" (2n+1)(x+4)” calculate Z, defined as follows: n=0 (5 - 1)√n if the interval of convergence is (a, b), then Z = sin a + sin b if the interval of convergence is (a, b), then Z = cos asin b if the interval of convergence is (a, b], then Z = sin a + cos b if the interval of convergence is [a, b], then Z = cos a + cos b Then the value of Z is -0.502 0.117 -0.144 -0.405 0.604 0.721 -0.950 -0.588arrow_forward
- H-/ test the Series 1.12 7√2 by ratio best 2n 2-12- nz by vitio test enarrow_forwardHale / test the Series 1.12 7√2 2n by ratio best 2-12- nz by vico tio test en - プ n2 rook 31() by mood fest 4- E (^)" by root test Inn 5-E 3' b. E n n³ 2n by ratio test ٤ by Comera beon Test (n+2)!arrow_forwardEvaluate the double integral ' √ √ (−2xy² + 3ry) dA R where R = {(x,y)| 1 ≤ x ≤ 3, 2 ≤ y ≤ 4} Double Integral Plot of integrand and Region R N 120 100 80- 60- 40 20 -20 -40 2 T 3 4 5123456 This plot is an example of the function over region R. The region and function identified in your problem will be slightly different. Answer = Round your answer to four decimal places.arrow_forward
- Find Te²+ dydz 0 Write your answer in exact form.arrow_forwardxy² Find -dA, R = [0,3] × [−4,4] x²+1 Round your answer to four decimal places.arrow_forwardFind the values of p for which the series is convergent. P-?- ✓ 00 Σ nº (1 + n10)p n = 1 Need Help? Read It Watch It SUBMIT ANSWER [-/4 Points] DETAILS MY NOTES SESSCALCET2 8.3.513.XP. Consider the following series. 00 Σ n = 1 1 6 n° (a) Use the sum of the first 10 terms to estimate the sum of the given series. (Round the answer to six decimal places.) $10 = (b) Improve this estimate using the following inequalities with n = 10. (Round your answers to six decimal places.) Sn + + Los f(x) dx ≤s ≤ S₁ + Jn + 1 + Lo f(x) dx ≤s ≤ (c) Using the Remainder Estimate for the Integral Test, find a value of n that will ensure that the error in the approximation s≈s is less than 0.0000001. On > 11 n> -18 On > 18 On > 0 On > 6 Need Help? Read It Watch Itarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY