FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
The system shown is at steady state, steady flow. At inlet 1, the rates of kinetic
energy, potential energy and enthalpy entering the system are: KE1 = 0.10 kW, PE1
%3D
0.22 kW, and H1 = 27.0 kW. At inlet 2, the rates are: KE2 = 0.23 kW, PE2 = 0.18 kW,
and H2 = 18.0 kVW. At exit 3, the rates are: KE3 = 0.52 kW, PE3 = 0.28 kW, and H3 =
7.0 kW. If the system gives up 5.0 kW of heat to the surroundings, what is the rate of
work transfer of the system? Express the answer in kw.
%3D
KE3
PE3
1
KE.
РЕ
H.
KE2
PE2
На
Control volume
boundary
Refrigerant 134a enters an insulated diffuser as a saturated vapor at 80 deg F with a velocity of 800 ft/s. The inlet area is 1.4 in^2. At the exit, the pressure is 400 lbf/in2 and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected. Determine the mass flow rate, in lb/s, and the exit temperature, in deg F.
4. thermodynamics
Knowledge Booster
Similar questions
- 6.4arrow_forwardDetermine the change in specific entropy, in kJ/kg K, of CO2 as an ideal gas undergoing a process from T, = 300 K, p, = 1 bar to T2 = 1420 K. P2 = 5 bar. Additional information g°= 1.70203 KJKG K °2 = 3.37901 kJikg K 1.215 kJ/kg. °C 1.215 kJkg. K 0 1.190 kJ/kg K O 1.373 kJ/kg Karrow_forwardWater within a piston-cylinder assembly, initially at 10 lbf/in.2, 750°F, undergoes an internally reversible process to 80 lbf/in.², 800°F, during which the temperature varies linearly with specific entropy. For the water, determine the work and heat transfer, each in Btu/lb. Neglect kinetic and potential energy effects. W12 m Q12 m = tel tel Btu/lb Btu/lbarrow_forward
- Water vapor at p₁ = 5 bar, T₁ of 1.3 m³/s. The vapor exits at p2 = = 360° C enters a turbine operating at steady state with a volumetric flow rate 1.5 bar, T₂ = 230° C with no stray heat transfer to the surroundings. Determine the power produced by the turbine Wcy in kW. Assume kinetic and potential energy effects are negligible. CV W cv = CV = Ex: 111.0 kW Water vapor P1, T₁ 1|(AV)1 Turbine 0 2 V P2, T2arrow_forward3. Steam enters a diffuser operating at steady state with a pressure of 3 bar, a temperature of 200 °C, and a velocity of 100 m/s. Steam exits the diffuser as a saturated vapor, with a velocity of 10 m/s. Heat transfer occurs from the steam to its surroundings at a rate of 200 kJ/kg of steam flowing. Neglecting potential energy effects, determine the exit pressure, in bar. (Note: 1 kJ/kg-1000 m²/s²) (1) (2) Quick handwritten,no gpt. TABLE A-3 Qe Pressure Conversions: Properties of Saturated Water (Liquid-Vapor): Pressure Table 1 bar -0.1 MPa Specific Volume m/kg Internal Energy 10 kPa kj/kg Enthalpy kj/kg Entropy kj/kg K Sat. Sat. Sat. Press. bar 0.04 28.96 0.06 36.16 Temp. "C Liquid Vapor Liquid Sat. Vapor Sat. By x10 Evap. Vapor he 1.0040 34.800 1.0064 23.739 0.08 41.51 1.0084 18.103 0.10 45.81 1.0102 14.674 0.20 60.06 1.0172 7.649 121.45 2415.2 151.53 2425.0 173.87 2432.2 191.82 2437.9 251.38 2456.7 Sat. Liquid hi his 121.46 2432.9 2554.4 0.4226 8.4746 151.53 2415.9 2567.4 0.5210…arrow_forwardSteam enters a turbine operating at steady state at 750°F and 450 lbf/in² and leaves as a saturated vapor at 0.8 lbf/in². The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in °F, and the volumetric flow rate of the steam at the inlet, in ft³/s. Step 1 Determine the exit temperature, in °F. T₂ = i °F.arrow_forward
- Steam enters a turbine operating at steady state at 750°F and 450 lbf/in² and leaves as a saturated vapor at 0.8 lbf/in². The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in °F, and the volumetric flow rate of the steam at the inlet, in ft3/s. Step 1 Your answer is correct. Determine the exit temperature, in °F. T2 = 94.3 Hint Step 2 °F. Determine the volumetric flow rate of the steam at the inlet, in ft³/s. (AV) 1 = i ft³/s Attempts: 1 of 4 usedarrow_forwardSteam enters a turbine operating at steady state at 750°F and 450 lbf/in² and leaves as a saturated vapor at 0.8 lbf/in². The turbine develops 12,000 hp, and heat transfer from the turbine to the surroundings occurs at a rate of 2 x 106 Btu/h. Neglect kinetic and potential energy changes from inlet to exit. Determine the exit temperature, in °F, and the volumetric flow rate of the steam at the inlet, in ft³/s.arrow_forwardArgon gas flows through a well-insulated nozzle at steady state. The temperature and velocity at the inlet are 550°R and 150 ft/s, respectively. At the exit, the temperature is 480°R and the pressure is 40 lbf/in². The area of the exit is 0.0085 ft². Use the ideal gas model with k = 1.67, and neglect potential energy effects. Determine the velocity at the exit, in ft/s, and the mass flow rate, in lb/s. Step 1 Determine the velocity at the exit, in ft/s. V₂ = i ft/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY