FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Steady-state operating data are shown in the figure below for an open feedwater heater. Heat transfer from
the feedwater heater to its surroundings occurs at an average outer surface temperature of 50°C at a rate of
100 kW. Ignore the effects of motion and gravity and let To = 25°C, po = 1 bar. Determine
(a) the ratio of the incoming mass flow rates, m/ṁ2.
(b) the rate of exergy destruction, in kW.
P2 = 1 bar
Tz = 400°C
1
ṁy = 0.7 kg/s
Pi = 1 bar
T, = 40°C
Feedwater heater
X3 = 25%
P3 = 1 bar
Tp = 50°C
%3D
2)
7.27 Figure P7.27 provides steady-state data for the outer wall of a dwelling on a day
when the indoor temperature is maintained at 25°C and the outdoor temperature is
35°C. The heat transfer rate through the wall is 1000 W. Determine, in W, the rate of
exergy destruction (a) within the wall, and (b) within the enlarged system shown on the
figure by the dashed line. Comment. Let T₂ = 35°C. 20.13, 33-56
Indoor
Boundary of
enlarged-
temperature=25°C
T=27C
T-3C
FIGURE PLAT
Outdoor
temperature=35°C
As shown in the figure below, two reversible cycles arranged in series each produce the same net work, Weycle: The first cycle receives
energy QH by heat transfer from a hot reservoir at TH = 1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate
temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature Tand rejects energy Qc by
heat transfer to a reservoir at Tc = 450°R. All energy transfers are positive in the directions of the arrows.
Hot reservoir at TH
R1
W cycle
Reservoir
at T
W cycle
R2
Cold reservoir at Te
Determine:
(a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles.
(b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 450°R,
respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two
cycles, Wcycle
Knowledge Booster
Similar questions
- Looking for help understanding the step I need to solve this.arrow_forwardA system undergoes a refrigeration cycle while receiving Qc by heat transfer at temperature Tc and discharging energy Qu by heat transfer at a higher temperature TH. There are no other heat transfers. (a) Using energy and exergy balances, show that the net work input to the cycle cannot be zero. (b) Show that the coefficient of performance of the cycle can be expressed as: Tc TH – TeA'¯ T(Qn – Q). B = where E, is the exergy destruction and To is the temperature of the exergy reference environment. (c) Using the result of part (b), obtain an expression for the maximum theoretical value for the coefficient of performance.arrow_forward7.66 Referring to the discussion of Sec. Z.6.2 as required, evaluate the exergetic efficiency for each of the following cases, assuming steady-state operation with negligible effects of heat transfer with the surroundings: a. Turbine: Wer 1200 hp, e 250 Btu//lb, eg = 15 Btu/lb, m 240 lb/min. b. Compressor: Wev/m=-105 kJ /kg, e = 5 kJ/kg, eg = 90 kJ/kg, m 2 kg /s. c. Counterflow heat exchanger: mh = 3 kg/s, me 10 kg /s, ef = 2100 kJ/kg, e = 300 kJ/kg, É = 3.4 MW 10 lb /s, m3 15 b /s, en = 1000 Btu/Ib, eg = 50 Btu/Ib, eg = 400 Btu/lb d. Direct contact heat exchanger: m1arrow_forward
- As shown in the figure below, two reversible cycles arranged in series each produce the same net work, Weycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1500°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Tc = 500°R. All energy transfers are positive in the directions of the arrows. Hot reservoir at T RI W. cycle Reservoir at T R2 Wcycle Cold reservoir at Te Determine: (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1500°R and 500°R, respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Woycle-arrow_forwardpls answer all the given thanksarrow_forwardDetermine the specific exergy of saturated water vapor at 137 °C, where To = 313K, Po = 101.3kPa. Assume the velocity and elevation is zero with reference to the environment. You must use following tables to solve this problem. (answer to 2 decimal) Saturated water temperature table Sat Liq. Temp., Sat Liq. Sat Liq. Sat Liq. vf uf hf sf °C m3/kg kJ/kg kJ/kg kJ/kg.K 30 0.001004 125.73 125.74 0.4368 35 0.001006 146.63 146.64 0.5051 40 0.001008 167.53 167.53 0.5724 45 0.00101 188.43 188.44 0.6386 Saturated water temperature table Temp., Sat. Vap. Sat. Vap. Sat. Vap. Sat. Vap. hg kJ/kg vg ug sg °C m3/kg kJ/kg kJ/kg.K 125 0.7508 2534.5 2713.5 7.0745 126 0.7358 2535.5 2714.8 7.0649 127 0.7208 2536.5 2716.1 7.0553 128 0.7058 2537.5 2717.4 7.0457 129 0.6908 2538.5 2718.7 7.0361 130 0.6758 2539.5 2720.0 7.0265 131 0.6608 2540.5 2721.4 7.0169 132 0.6458 2541.4 2722.7 7.0073 133 0.6308 2542.4 2724.0 6.9977 134 0.6158 2543.4 2725.3 6.9881 6.9785 135 0.6008 2544.4 2726.6 136 0.5858 2545.4 2727.9…arrow_forward
- As shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Tc = 500°R. All energy transfers are positive in the directions of the arrows. Determine: Hot reservoir at TH QH Reservoir at T R1 lo ali R2 Qc Cold reservoir at Te W. cycle W cycle (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 500°R. respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Wcycle.arrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH = 1500°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy QC by heat transfer to a reservoir at TC = 450°R. All energy transfers are positive in the directions of the arrows. Determine:(a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles.(b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1500°R and 450°R, respectively. Also, determine the ratio of the net work developed by the single cycle to the net work developed by each of the two cycles, Wcycle.arrow_forwardNeed ASAP thank you.arrow_forward
- Determin the exergy, in kJ, of the contents of a 1.5 m3 storage tank, if the tank is filled with: a) air as an ideal gas at 440°C and 0.70 bar b) water vapor at 440°C and 0.70 bar Ignore the effects of motion and gravity and let To = 22°C and Po=1 bar.arrow_forwardAs shown in the figure below, two reversible cycles arranged in series each produce the same net work, Wcycle. The first cycle receives energy QH by heat transfer from a hot reservoir at TH-1000°R and rejects energy Q by heat transfer to a reservoir at an intermediate temperature, T. The second cycle receives energy Q by heat transfer from the reservoir at temperature T and rejects energy Qc by heat transfer to a reservoir at Te - 500°R. All energy transfers are positive in the directions of the arrows. Determine: Hot reservoir at TH lH R1 Reservoir Q at T 20 R2 lc Cold reservoir at Tc We cycle W Wcycle (a) the intermediate temperature T, in °R, and the thermal efficiency for each of the two power cycles. (b) the thermal efficiency of a single reversible power cycle operating between hot and cold reservoirs at 1000°R and 500°R, respectively. Also, determine the ratio of the network developed by the single cycle to the network developed by each of the two cycles, Wcycle-arrow_forward7.30 A rigid, insulated tank contains 06 kg of air, initially at 200 kPa, 20°C. The air is stirred by al paddle wheel until its pressure is 250 kPa. Using the ideal gas model with c, - 0.72 kJ/kg · K, determine, in kJ, (a) the work, (b) the change in exergy of the air, and (c) the amount of exergy destroyed. Ignore the effects of motion and gravity, and let T, - 20°C, Po - 100 kPa.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY