FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
A well insulated turbine operates at steady state. Steam enters the turbine at 4 MPa with a specific enthalpy of 3015.4 kJ/kg and a velocity of 10 m/s. The steam expands to the turbine exit where the pressure is 0.07 MPa, specific enthalpy is 2431.7 kJ/kg, and the velocity is 90 m/s. The mass flow rate is 11.95 kg/s. Neglecting potential energy effects, determine the power developed by the turbine, in kW.
A turbine operates at steady state between pressures of 83.5 bar and 2 bar. The
inlet temperature is maintained at 1,372 K. The turbine is well-insulated. Air,
behaving as an ideal gas with R = 0.287 kJ/kg*K, is the working fluid. Assume
CP is constant and equal to 1.010 kJ/kg*K.
What is the minimum possible outlet temperature, in K?
6.110 Figure P6.110 shows a simple vapor power plant operating
at steady state with water as the working fluid. Data at key locations
are given on the figure. The mass flow rate of the water circulating
through the components is 109 kg/s. Stray heat transfer and kinetic
and potential energy effects can be ignored. Determine
a. the net power developed, in MW.
b. the thermal efficiency.
c. the isentropic turbine efficiency.
t2
d. the isentropic pump efficiency.
e. the mass flow rate of the cooling water, in kg/s.
f. the rates of entropy production, each in kW/K, for the turbine,
condenser, and pump.
P = 100 bar
T = 520°C
%3D
Power out
Turbine
P2 = 0.08 bar
2 = 90%
%3D
Steam
Cooling
water in at 20°C
generator
Condenser
Pa= 100 bar
T= 43°C
Cooling
water out at 35°C
4.
Pump
3 P3 0.08 bar
Saturated liquid
Power
in
FIGURE P6.110
2.
www
Knowledge Booster
Similar questions
- An adiabatic pump operates at steady state. Water enters as saturated liquid at P = 0.02 MPa and is compressed to P = 1 MPa. What is (approximately) the rate at which shaft work is added in the pump, per kg of entering water? A. 820 J b. 980 J c. 1760 J d. 1300 Jarrow_forwardAt steady state, Refrigerant 22 enters (1) the compressor at 40C, 5.5bar and is compressed to 60C, 13.8bar. R-22 exiting (2) the compressor enters a heat exchanger where energy transfer to air as a separate stream occurs and the refrigerant exits (3) as a liquid at 13.5bar, 32C. Air enters (4) the condenser at 27C, 1.0bar with a volumetric flow rate of 21.2m3/min and exits (5) at 43C. Assuming ideal gas behavior for the air and stray heat transfer and kinetic and potential energy effects are negligible, determine the compressor powerarrow_forwardDetermine the change in exergy in kJ for each of the following processes in the system with 1 kg of steam at 20 bar and 240 °C initially. a) In case the system is heated to double its volume at constant pressure. b) In case of expansion by doubling the system volume isothermally. dead state; T0=20 °C, P0=1 bararrow_forward
- Air enters a diffuser operating at steady state at 540°R, 15 Ilbf/in.?, with a velocity of 600 ft/s, and exits with a velocity of 60 ft/s. The ratio of the exit area to the inlet area is 6. Assuming the ideal gas model for the air and ignoring heat transfer, determine the temperature, in °R, and pressure, in Ibf/in.?, at the exit.arrow_forwardA feed water heater operating in steady state has 2 inlets and 1 outlet. Liquid water enters. from the 1st inlet with 7 bar pressure, 42°C temperature and 70 kg/s mass flow.From the inlet 2, a liquid-steam mixture enters to the system with 98% quality and 7 bar pressure. Saturated liquid comes out from the outlet at 7 bar pressure.Heat transfer with the environment, kinetic and potential energy effects are neglected. Find the mass flow entering the 2nd inlet. Find the mass flow entering from the 2nd inlet. (kg/s)arrow_forwardRefrigerant 22 in a refrigeration system enters one side of a counter-flow heat exchanger at 12 bar, 28°C. The refrigerant exits at 12 bar, 20°C. A separate stream of R-22 enters the other side of the heat exchanger as saturated vapor at 2 bar and exits as superheated vapor at 2 bar. The mass flow rates of the two streams are equal. Stray heat transfer from the heat exchanger to its surroundings and kinetic and potential energy effects are negligible. Determine the entropy production in the heat exchanger, in kJ/K per kg of refrigerant flowing. What gives rise to the entropy production in this application? Show state point 1 and 2, then 3 and 4 on a T-s diagram, show the process from 1 to 2 and from 3 to 4. ,(2) 12 bar 20°C 12 bar (1) 28°C (4) 2 bar (3) 2 bar sup. vapor sat. vaporarrow_forward
- Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10 kg/s and exits at 350 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K. If the designer wants to ensure no water vapor is present in the exiting water stream, what is the minimum mass flow rate for the water, in kg/s?arrow_forwardSteady-state operating data are shown in the figure below for an open feedwater heater. Heat transfer from the feedwater heater to its surroundings occurs at an average outer surface temperature of 50°C at a rate of 100 kW. Ignore the effects of motion and gravity and let To = 25°C, po = 1 bar. Determine (a) the ratio of the incoming mass flow rates, m/ṁ2. (b) the rate of exergy destruction, in kW. P2 = 1 bar Tz = 400°C 1 ṁy = 0.7 kg/s Pi = 1 bar T, = 40°C Feedwater heater X3 = 25% P3 = 1 bar Tp = 50°C %3D 2)arrow_forwardWhen T > T0, the exergy and heat transfer are in the same direction.arrow_forward
- Assuming the ideal gas model for the air and ignoring heat transfer, determine the temperature, in °R, and pressure, in lbf/in.2, at the exit.arrow_forwardSteam enters a counterflow heat exchanger operating at steady state at 0.05 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.6 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30oC and exits at 60oC. The ideal gas model with cp = 1.005 kJ/kg·K can be assumed for air. Kinetic and potential energy effects are negligible.Determine the temperature of the entering steam, in oC.For the overall heat exchanger as the control volume, what is the rate of heat transfer, in kW.arrow_forwardFigure PZ55 and the accompanying table provide the schematic and steady-state operating data for a flash 7.55 chamber fitted with an inlet valve that produces saturated vapor and saturated liquid streams from a single entering stream of liquid water. Stray heat transfer and the effects of motion and gravity are negligible. Determine (a) the mass flow rate, in Ib/s, for each of the streams exiting the flash chamber and (b) the total rate of exergy destruction, in Btu/s. Let To = 77°F, Po =1 atm State Condition T(°F) p(lbf/in.°) h(Btu/lb) s(Btu/lb R) liquid 300 80 269.7 1 0.4372 1.6996 30 1164.3 2 sat. vapor 3 sat. liquid 218.9 0.3682 30 2 Saturated vapor P2=30 lbf/in.2 Flash chamber Valve =100 lb/s T 300°F P=80 lbf/in.2 Saturated liquid,A+ P3=30 lbf/in.2 3 FIGURE P7.55arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY