![Connect 2-Year Access Card for Chemistry: The Molecular Nature of Matter and Change](https://www.bartleby.com/isbn_cover_images/9780078129865/9780078129865_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The energy level to which a ground state electron in a hydrogen atom jumps to after it absorbs a photon of wavelength
Concept introduction:
An atom of hydrogen contains one electron. But the spectrum of hydrogen consists of a large number of lines. This is so because a sample of hydrogen contains a very large number of atoms. When energy is supplied to a sample of gaseous atoms of hydrogen, different atoms absorb different amounts of energy. Therefore, the electrons in different atoms jump to different energy levels. Upon losing the energies gained initially, the electrons jump back to lower energy levels and release radiations of different wavelengths.
The equation used to predict the position and wavelength of any line in a given series is called the Rydberg’s equation.
Rydberg’s equation is as follows:
Here,
The conversion factor to convert wavelength from
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 7.73P
An electron in a hydrogen atom moves to energy level 5 from the ground state upon absorption of a photon of wavelength
Explanation of Solution
In the ground state of a hydrogen atom,
The value of the Rydberg’s constant is
Substitute 1 for
Rearrange the above equation and calculate the value of
An electron in a hydrogen atom moves to energy level 5 from the ground state upon absorption of a photon of wavelength
(b)
Interpretation:
The intermediate energy level to which the electron jumps after emission of a photon of wavelength
Concept introduction:
An atom of hydrogen contains one electron. But the spectrum of hydrogen consists of a large number of lines. This is so because a sample of hydrogen contains a very large number of atoms. When energy is supplied to a sample of gaseous atoms of hydrogen, different atoms absorb different amounts of energy. Therefore, the electrons in different atoms jump to different energy levels. Upon losing the energies gained initially, the electrons jump back to lower energy levels and release radiations of different wavelengths.
The equation used to predict the position and wavelength of any line in a given series is called the Rydberg’s equation.
Rydberg’s equation is as follows:
Here,
The conversion factor to convert wavelength from
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 7.73P
The intermediate energy level to which the electron jumps after emission of a photon of wavelength
Explanation of Solution
The emission of a photon leads to the transition of an electron from a higher energy level to a lower energy level. Initially, the electron was in energy level 5. Since in the Rydberg’s equation,
The value of the Rydberg’s constant is
Substitute 5 for
Rearrange the above equation and calculate the value of
The intermediate energy level to which the electron jumps after emission of a photon of wavelength
(c)
Interpretation:
The wavelength of the photon emitted after the electron jumps from
Concept introduction:
An atom of hydrogen contains one electron. But the spectrum of hydrogen consists of a large number of lines. This is so because a sample of hydrogen contains a very large number of atoms. When energy is supplied to a sample of gaseous atoms of hydrogen, different atoms absorb different amounts of energy. Therefore, the electrons in different atoms jump to different energy levels. Upon losing the energies gained initially, the electrons jump back to lower energy levels and release radiations of different wavelengths.
The equation used to predict the position and wavelength of any line in a given series is called the Rydberg’s equation.
Rydberg’s equation is as follows:
Here,
The conversion factor to convert wavelength from
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 7.73P
The wavelength of the photon emitted after the electron jumps from
Explanation of Solution
The emission of a photon leads to the transition of an electron from a higher energy level to a lower energy level. Initially, the electron was in energy level 3 and later jumps to energy level 1. Since in the Rydberg’s equation,
The value of the Rydberg’s constant is
Substitute 3 for
The wavelength of the photon emitted after the electron jumps from
Want to see more full solutions like this?
Chapter 7 Solutions
Connect 2-Year Access Card for Chemistry: The Molecular Nature of Matter and Change
- 4. Predict the major product(s) for each of the following reactions. HBr (1 equiv.) peroxide, A a. b. NBS, peroxide, Aarrow_forwardIn addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used separation techniques. Some of these techniques are:Distillation – this process is used to separate components that have significantly different boiling points. The solution is heated and the lower boiling point substance is vaporized first. The vapor can be collected and condensed and the component recovered as a pure liquid. If the temperature of the mixture is then raised, the next higher boiling component will come off and be collected. Eventually only non-volatile components will be left in the original solution.Centrifugation – a centrifuge will separate mixtures based on their mass. The mixture is placed in a centrifuge tube which is then spun at a high speed. Heavier components will settle at the bottom of the tube while lighter components will be at the top. This is the technique used to separate red blood cells from blood plasma.Sieving – this is…arrow_forwardBriefly describe a eutectic system.arrow_forward
- man Campus Depa (a) Draw the three products (constitutional isomers) obtained when 2-methyl-3-hexene reacts with water and a trace of H2SO4. Hint: one product forms as the result of a 1,2-hydride shift. (1.5 pts) This is the acid-catalyzed alkene hydration reaction.arrow_forwardNonearrow_forward. • • Use retrosynthesis to design a synthesis Br OHarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)