FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
T-7
3. A well-insulated turbine at steady state develops 10,000 Hp when provided with a
steam mass flow rate of 110 Ibm/s. The steam enters at 300 psi with a velocity of 180
ft/s and exits as saturated vapor at 10 psi with a velocity of 400 ft/s. Neglecting any
potential energy effects, determine inlet temperature (°C).
62°F Clear
FZ
FS
PRT SCR
INS
DEL
F10
F11
F12
BACKSPACE
II
+
00
Steam enters the first stage of the turbine illustrated in the Figure below at 40 bar and 500 ºC with a volumetric flow rate of 90 m3/min. The steam leaves the turbine at 20 bar and 400 ºC. The steam is then reheated to a constant temperature of 500 ºC before entering the second stage of the turbine. The steam leaves the second stage as saturated steam at 0.6 bar. For a steady state operation and ignoring heat losses and the effects of kinetic and potential energy, determine:a) The mass flow of steam.b) The Power produced by turbine 1.c) The power produced by the turbine 2.d) The rate of heat transfer to the heater.
Knowledge Booster
Similar questions
- kg 3. The working fluid in a steady flow process flows at a rate of 220 The fluid min rejects 100 - KJ passing through the system. The conditions of the fluid at the inlet and outlet are given: V1 = 320 "; P, = 6.0 bar; U1 = 2,000 ; v1= 0.36 : KJ m3 and kg kg m3 The suffix 1 indicates the kg KJ V2 = 140 4; P2 = 1.2 bar; U2 = 1,400 : ; V2= 1.3 kg condition at the inlet and 2 indicates the outlet of the system. Determine the power capacity of the system in MW.arrow_forward5. The cooled water from a cooling tower returns to the condenser at 21°C at a mass flow rate of 54.4 kg/s. The air entering at state 1 has h₁ = 47.7 kJ/kg da and w₁ = 0.006 kg v/kg da. The air leaving the cooling tower at state 2 has h₂ = 116.5 kJ/kg da and w₂ = 0.027 kg v/kg da. The makeup water is supplied at 25°C and the mass flow rate of dry air is 54.4 kg da/s. What is the temperature of the warm water entering the tower? Express your answer in °C.arrow_forwardA pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.2, and 180°F, respectively; at the exit the pressure is 90 lbf/in.² The pump requires 1/25 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 Btu/lb. °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump. AT = °Rarrow_forward
- A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.2, and 180°F, respectively; at the exit the pressure is 120 lbf/in.2 The pump requires 1/35 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 Btu/lb · °R.Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.arrow_forwardA pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in.2, and 180°F, respectively; at the exit the pressure is 60 lbf/in.2 The pump requires 1/ 35 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 lb/ft3 and constant specific heat of 1 Btu/lb · °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump.arrow_forwardQUESTION 3 (Analysis of steam cycles) A steam power plant operates on a theoretical reheat cycle. Steam at boiler at 140 bar, 500°C expands through the high-pressure turbine. It is reheated at a constant pressure of 40 bar to 500°C and expands through the low-pressure turbine to a condenser at 0.1 bar. 3.1 Draw T-s and h-s diagramsarrow_forward
- A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 Ibf/in.², and 180°F, respectively; at the exit the pressure is 120 Ibf/in.2 The pump requires 1/ 15 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 Ib/ft3 and constant specific heat of 1 Btu/lb · °R. Neglecting kinetic and potential energy effects, determine the temperature change, in °R, as the water flows through the pump. AT = i °Rarrow_forwardA turbine, operating under steady-flow conditions, receives X1 kg of steam per hour (For X1 refer Table. 1). The steam enters the turbine at a velocity of 3000 m/min, an elevation of 5 m and a specific enthalpy of 2787 kJ/kg. It leaves the turbine at a velocity of 6000 m/min, an elevation of 1 m and a specific enthalpy of 2259 kJ/kg. Heat losses from the turbine to the surroundings amount to 16736 kJ/h. Determine the power output of the turbine.arrow_forwardAir enters a compressor operating at steady state at 14.7 lbf/in.2 and 60°F and is compressed to a pressure of 150 lbf/in.2 As the air passes through the compressor, it is cooled at a rate of 10 Btu per lb of air flowing by water circulated through the compressor casing. The volumetric flow rate of the air at the inlet is 5000 ft3/min, and the power input to the compressor is 700 hp. The air behaves as an ideal gas, there is no stray heat transfer, and kinetic and potential effects are negligible. Determine (a) the mass flow rate of the air, lb/s, and (b) the temperature of the air at the compressor exit, in °F.arrow_forward
- As shown in the figure, Refrigerant 22 enters the compressor of an air conditioning unit operating at steady state at 40oF, 80 lbf/in2 and is compressed to 160oF, 200 lbf/in2. The refrigerant exiting the compressor enters a condenser where energy transfer to air as a separate stream occurs, and the refrigerant exits as a liquid at 200 lbf/in2, 90oF. Air enters the condenser at 75oF, 14.7 lbf/in2 with a volumetric flow rate of 1500 ft3/min and exits at 110oF. Neglect stray heat transfer and kinetic and potential energy effects, and assume ideal gas behavior for the air.arrow_forwardAs shown in the figure, Refrigerant 22 enters the compressor of an air conditioning unit operating at steady state at 40oF, 80 lbf/in2 and is compressed to 160oF, 200 lbf/in2. The refrigerant exiting the compressor enters a condenser where energy transfer to air as a separate stream occurs, and the refrigerant exits as a liquid at 200 lbf/in2, 90oF. Air enters the condenser at 70oF, 14.7 lbf/in2 with a volumetric flow rate of 1500 ft3/min and exits at 110oF. Neglect stray heat transfer and kinetic and potential energy effects, and assume ideal gas behavior for the air.arrow_forwardRefrigerant 134a enters an insulated diffuser as a saturated vapor at 120°F with a velocity of 1400 ft/s. The inlet area is 1.4 in?. At the exit, the pressure is 400 Ibf/in2 and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected. Determine the mass flow rate, in Ib/s, and the exit temperature, in °F.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY