
(a)
The expression for the two forces in unit vector notation.
(a)

Answer to Problem 7.61AP
The expression for the first force in unit vector notation is
Explanation of Solution
The mass of an object is
Write the formula to calculate the expression for the first force in unit vector notation is
Here,
Write the formula to calculate the expression for the second force in unit vector notation
Here,
Conclusion:
Substitute
Substitute
Therefore, the expression for the first force in unit vector notation is
(b)
The total force exerted on the object.
(b)

Answer to Problem 7.61AP
The total force exerted on the object is
Explanation of Solution
Write the formula to calculate the total force exerted on the object
Here,
Conclusion:
Substitute
Therefore, the total force exerted on the object is
(c)
The acceleration on the object.
(c)

Answer to Problem 7.61AP
The acceleration on the object is
Explanation of Solution
Write the formula to calculate the acceleration of the object
Here,
Conclusion:
Substitute
Therefore, the acceleration on the object is
(d)
The velocity on the object.
(d)

Answer to Problem 7.61AP
The velocity on the object is
Explanation of Solution
Write the formula to calculate the velocity of the object at
Here,
Conclusion:
Substitute
Therefore, the velocity on the object is
(e)
The position on the object.
(e)

Answer to Problem 7.61AP
The position on the object is
Explanation of Solution
Write the formula to calculate the position of the object
Here,
Substitute
Conclusion:
Therefore, the position on the object is
(f)
The kinetic energy of the object from the formula
(f)

Answer to Problem 7.61AP
The kinetic energy of the object from the formula
Explanation of Solution
Write the formula to calculate the magnitude of the final velocity of the object
Here,
Substitute
Write the formula to calculate the kinetic energy of the object
Conclusion:
Substitute
Therefore, the kinetic energy of the object from the formula
(g)
The kinetic energy of the object from the formula
(g)

Answer to Problem 7.61AP
The kinetic energy of the object from the formula
Explanation of Solution
Write the formula to calculate the magnitude of the initial velocity of the object
Here,
Substitute
Write the formula to calculate the final kinetic energy of the object
Conclusion:
Substitute
Therefore, the kinetic energy of the object from the formula
(h)
The conclusion by comparing the answer of part (f) and (g).
(h)

Explanation of Solution
Newton gave the law for the constant acceleration motion while the work energy theorem relates the work done by the object to its energy.
In part (f) the kinetic energy of the object is calculated with the help of Newton’s law while the kinetic energy in part (g) is calculated by the work energy theorem. Since in both the parts the kinetic energy of the object comes out to be same that conclude both the law and theorem are relevant to each other. The work energy theorem is consistent with the Newton’s law.
Conclusion:
Therefore, the work energy theorem is consistent with the Newton’s law of equation.
Want to see more full solutions like this?
Chapter 7 Solutions
PHYSICS 1250 PACKAGE >CI<
- 20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forwardpls help on thesearrow_forward
- pls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forward
- pls help on allarrow_forwardpls help on allarrow_forward6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forward
- pls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward17. Two charges, one of charge +2.5 × 10-5 C and the other of charge +3.7 × 10-6 C, are 25.0 cm apart. The +2.5 × 10−5 C charge is to the left of the +3.7 × 10−6 C charge. a. Draw a diagram showing the point charges and label a point Y that is 20.0 cm to the left of the +3.7 × 10-6 C charge, on the line connecting the charges. (Field lines do not need to be drawn.) b. Calculate the net electric field at point Y.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





