FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Steam enters a nozzle at a pressure of 100 kPa and 150 deg with a velocity of 0.47 m/s. It exits with 30% in the vapor phase at 150 deg C and a velocity of 0.65 m/s. How much heat is lost (kVW)
when the mass flowrate is 0.17 kg/s?
please do it in. 30 mints
(b) Steam at 4 MPa and 400 °C enters a nozzle steadily with a velocity of 60 m/s, and it leaves at 2 MPa and
ii.
iii.
iv.
V.
i.
300 °C. The inlet area of the nozzle is 50 cm², and heat is being lost at the rate of 75 kW.
Write the energy balance equation for this process.
The mass flow rate of the steam, kg/s.
The outlet velocity of the steam, m/s.
The outlet area of the nozzle, m².
Calculate the velocity of the steam at the outlet if the inlet and outlet pressure, temperature, and
mass flow rate are the same, but the nozzle is well insulated (adiabatic process), m/s.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1:Heat flows from a hot reservoir at 800 K to another reservoir at 250 K. H entropy change of the overall process is 4.25 kJ/K, make calculations for the heat flowinger of the high temperature reservoir.arrow_forwardHelium is compressed through a compressor steadily. At the inlet the pressure is and the temperature is . At the exit the pressure is and the temperature is . The power input is and the heat loss rate is during this process. Neglect the kinetic and potential energy changes. Assume helium is ideal gas with a constant specific heat and its specific heat ratio , which means that enthalpy can be calculated using . Calculate the work per unit mass _________arrow_forward200Kg/min superheated steam at 40 bar and 350C enters a turbine through a 7.5cm ID pipe. It exits at 5bar as saturated steam through a 5cm ID pipe neglect the change in potential energy of the system. What is the temperature of the outlet saturated system? How much energy is transferred to or from the turbine?arrow_forward
- Refrigerant 134a enters an insulated diffuser as a saturated vapor at 60°F with a velocity of 1200 ft/s. The inlet area is 1.4 in?. At the exit, the pressure is 400 lby/in? and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected. Determine the mass flow rate, in Ib/s, and the exit temperature, in °F. Step 1 Determine the mass flow rate, in Ib/s. i Ib/s.arrow_forwardHelium is compressed through a compressor steadily. At the inlet the pressure is and the temperature is . At the exit the pressure is and the temperature is . The power input is and the heat loss rate is during this process. Neglect the kinetic and potential energy changes. Assume helium is ideal gas with a constant specific heat and its specific heat ratio , which means that enthalpy can be calculated using . Calculate the enthalpy per unit mass at the exit _________arrow_forward4.54 kg mass of water vapor at 100kPa (abs) and an entropy of 8.0333 kJ/kg K; undergo a process at constant pressure to a state where the occupied volume is 1.62 m3/kg. It is requested: a. Plot t-V diagram b. Find the initial temperature (°C) c. Find the quality (%), moisture (%) and final internal energy (kJ)arrow_forward
- Q.6.A. Oxygen enters a nozzle with a negligible velocity at 440 K and 12 bar, and leaves at 1.9 bar. Determine the volumetric flow rate of the oxygen at the nozzle entrance if the nozzle exit area is 2.5 cm2 and the ratio of inlet temperature to the outlet equal 1.69. (Cy = 718 J/kg K and Cp = 1005 J/kg K)arrow_forwardpls answer asap thanksarrow_forwardplease do it within 29 mintsarrow_forward
- A turbine, operating under steady- flow conditions, reccives 1000 kg/min of stcam. At the inlet, the pressure is 30 bar, the temperature is 400°C, the velocity At the exit, the pressure is 0.7 bar, the quality is (100%), and the velocity is 100 m/s. If the turbine produced a power output of 9300 KW. By using the energy balance of open system with sutable tables, answer the following: (a) What are the main assumptions ? (b) Calculate dh, AKe ? (c) Calculate the rate of heat transfer between the turbine and surroundings, in kW.arrow_forward6. A turbine operating on a steady flow of nitrogen is to produce 0.8 kW of power by expanding nitrogen from 300 kPa, 350 K (inlet specific volume of 0.346 m³/kg), to 120 kPa. For the preliminary design, the inlet velocity is assumed to be 30 m/s, the exit velocity is assumed to be 50 m/s, and the expansion will be considered as a quasi-equilibrium process such that pu14=constant. Determine the required flow rate. [ans: 9.655x10-3 kg/s]arrow_forwardTopic: Ideal gas process Instructions: Answer the following review questions and show complete solutions. *please write legibly. Thank youarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license