When an object is displaced by an amount x from stable equilibrium, a restoring force acts on it, tending to return the object to its equilibrium position. The magnitude of the restoring force can be a complicated function of x . In such cases, we can generally imagine the force function F ( x ) to be expressed as a power series in x as F ( x ) = − ( k 1 x + k 2 x 2 + k 3 x 3 + ⋯ ) . The first term here is just Hooke’s law, which describes the force exerted by a simple spring for small displacements. For small excursions from equilibrium, we generally ignore the higher-order terms, but in some cases it may be desirable to keep the second term as well. If we model the restoring force as F = −( k 1 x + k 2 x 2 ), how much work is done on an object in displacing it from x = 0 to x = x max by an applied force − F ?
When an object is displaced by an amount x from stable equilibrium, a restoring force acts on it, tending to return the object to its equilibrium position. The magnitude of the restoring force can be a complicated function of x . In such cases, we can generally imagine the force function F ( x ) to be expressed as a power series in x as F ( x ) = − ( k 1 x + k 2 x 2 + k 3 x 3 + ⋯ ) . The first term here is just Hooke’s law, which describes the force exerted by a simple spring for small displacements. For small excursions from equilibrium, we generally ignore the higher-order terms, but in some cases it may be desirable to keep the second term as well. If we model the restoring force as F = −( k 1 x + k 2 x 2 ), how much work is done on an object in displacing it from x = 0 to x = x max by an applied force − F ?
Solution Summary: The author explains the work done on an object to displace from x=0 to
When an object is displaced by an amount x from stable equilibrium, a restoring force acts on it, tending to return the object to its equilibrium position. The magnitude of the restoring force can be a complicated function of x. In such cases, we can generally imagine the force function F(x) to be expressed as a power series in x as
F
(
x
)
=
−
(
k
1
x
+
k
2
x
2
+
k
3
x
3
+
⋯
)
. The first term here is just Hooke’s law, which describes the force exerted by a simple spring for small displacements. For small excursions from equilibrium, we generally ignore the higher-order terms, but in some cases it may be desirable to keep the second term as well. If we model the restoring force as F = −(k1x + k2x2), how much work is done on an object in displacing it from x = 0 to x = xmax by an applied force −F?
1. An ideal gas is taken through a four process cycle abcda. State a has a pressure of 498,840 Pa. Complete the tables
and plot/label all states and processes on the PV graph. Complete the states and process diagrams on the last page.
Also, provide proper units for each column/row heading in the tables.
Pressure (Pa)
500,000
450,000
400,000
350,000
300,000
250,000
200,000
150,000
100,000
Process
ab
bc
cd
da
States
P( )
V( )
50,000
0
0.000
T = 500 K
T= 200 K
0.001
0.002
0.003
0.004
0.005
Volume (m^3)
Nature of Process
isothermal expansion to Vb = 0.005 m³ (T = 500 K)
isometric
isothermal compression to V₁ = 0.003 m³ (T = 200 K)
adiabatic compression to VA = 0.001 m³
b
C
a
T()
U ( )
Processes
a-b
Q( )
+802.852
W()
AU ( )
b-c
c→d
+101.928
da
Cycle
Plz no chatgpt I
A = 45 kN
a = 60°
B = 20 kN
ẞ = 30°
Problem:M1.1
You and your friends are on an archaeological adventure and are trying to disarm an ancient trap to do so you
need to pull a log straight out of a hole in a wall. You have 1 rope that you can attach to the log and there are
currently 2 other ropes and weights attached to the end of the log. You
know the force and direction of the ropes currently attached are arranged
as shown below what is the magnitude and direction 'e' of the minimum
force you need to apply to the third rope for the force on the log to be in
direction of line 'a'? What is the resultant force in direction 'a'?
a
//////
//////
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY