Interpretation:
The possible values of l and ml for n = 2 quantum level should be identified using the concept of quantum numbers.
Concept Introduction:
Quantum numbers are explained for the distribution of electron density in an atom. They are derived from the mathematical solution of Schrodinger’s equation for the hydrogen atom. The types of quantum numbers are the principal quantum number (n), the
Principal Quantum Number (n)
The principal quantum number (n) assigns the size of the orbital and specifies the energy of an electron. If the value of n is larger, then the average distance of an electron in the orbital from the nucleus will be greater. Therefore the size of the orbital is large. The principal quantum numbers have the integral values of 1, 2, 3 and so forth and it corresponds to the quantum number in
Angular Momentum Quantum Number (l)
The angular momentum quantum number (l) explains the shape of the atomic orbital. The values of l are integers which depend on the value of the principal quantum number, n. For a given value of n, the possible values of l range are from 0 to n − 1. If n = 1, there is only one possible value of l (l=0). If n = 2, there are two values of l: 0 and 1. If n = 3, there are three values of l: 0, 1, and 2. The value of l is selected by the letters s, p, d, and f. If l = 0, we have an s orbital; if l = 1, we have a p orbital; if l = 2, we have a d orbital and finally if l = 3, we have a f orbital. A collection of orbitals with the same value of n is called a shell. One or more orbitals with the same n and l values are referred to a subshell (sublevel). The value of l also has a slight effect on the energy of the subshell; the energy of the subshell increases with l (s < p < d < f).
Magnetic Quantum Number (ml)
The magnetic quantum number (ml) explains the orientation of the orbital in space. The value of ml depends on the value of l in a subshell. This number divides the subshell into individual orbitals which hold the electrons. For a certain value of l, there are (2l + 1) integral values of ml which is explained as follows:
ml = ‒ l, ..., 0, ..., +l
If l = 0, there is only one possible value of ml: 0.
If l = 1, then there are three values of ml: −1, 0, and +1.
If l = 2, there are five values of ml, namely, −2, −1, 0, +1, and +2.
If l = 3, there are seven values of ml, namely, −3, −2, −1, 0, +1, +2, and +3, and so on.
The number of ml values indicates the number of orbitals in a subshell with a particular l value. Therefore, each ml value refers to a different orbital.
To find: Get the possible values of l and ml for n = 2 quantum level
The possible values of ml for n = 2 quantum levels are given as shown below:
If l = 0, there is only one possible value of ml: 0 for n = 2.
If l = 1, then there are three values of ml: −1, 0, and +1 for n = 2.
Find the value of ‘l’ for n = 2
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Loose Leaf for Chemistry
- 14.36 Draw all reasonable resonance structures for each compound. a. + b. C. :O: d. :O: NH2 NH2 :O:arrow_forward14.32 What diene and dienophile are needed to prepare each compound by a Diels-Alder reaction? a. b.arrow_forward14.34 Draw all reasonable resonance structures for each species. a. b. Ö :0: C. :0: :0: d. OH e. f. :O:arrow_forward
- 7. The standard reduction potentials for two half-reactions are shown above. Which of the statements listed below will be true for the following reaction taking place under standard conditions? a. E° b. E° c. E° = d. E° e. E° = Al (s) + Cr³+ → Al³+ + Cr (s) 0.93 V, and the reaction is not spontaneous 0.93 V, and the reaction is spontaneous 2.39 V, and the reaction is not spontaneous 2.39 V, and the reaction is not spontaneous 0.93 V, and the reaction is spontaneous Cu2+ + 2e → Cu E° = +0.34 V Zn2+ + 2e → Zn E° = -0.76 V E° = -1.18 V Mn2+ + 2e → Mn 8. Based on the above reduction potential, which of the following reactions will occur spontaneously? a. Mn²+ + Cu → Mn + Cu2+ b. Mn²+ + Zn → Mn + Zn²+ c. Zn2+ + Cu → Zn + Cu²+ d. Zn²+ + Mn → Zn + Mn2+ e. Cu²+ + Zn²+ → Cu + Znarrow_forward14.35 For which compounds can a second resonance structure be drawn? Draw an additional resonance structure and the hybrid for each resonance-stabilized compound. a. OCH3 OCH 3 b. C. d. CH3 NHCH3arrow_forwardpls help on all, inlcude all steps.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning