FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
None
A balloon filled with helium at 20°C, 1 bar and a volume of 0.5 m³ is moving with a velocity of 15 m/s at an
elevation of 0.5 km relative to an exergy reference environment for which To = 20°C, po = 1 bar. Using the
ideal gas model with k = 1.67, determine the specific exergy of the helium, in kJ.
Using image below
Evaluate the exergy X1 of the initial state 1 and answer the following question: • Is the useful work in the process 1 → 2 → DS smaller, equal, or greater than exergy X1?
• Discuss your result
Knowledge Booster
Similar questions
- Using steam table data, determine the indicated property data for a process in which there is no change in specific entropy between state 1 and state 2. In each case, locate states on a sketch of the T-s diagram.arrow_forwardA mole of an ideal, diatomic gas undergoes isothermal, reversible expansion from 1.0 dm 3 to 10.0 dm 3 at 100 oC. If the same gas undergoes irreversible expansion against a constant pressure of 1.00 bar, which of the following quantities would change? A. Internal Energy B. Enthalpy C. Free Energy D. Entropyarrow_forwardConsider 0.75 kg of N2 at 300 K, 1 bar contained in a rigid tank connected by a valve to another rigid tank holding 0.3 kg of CO2 at 300 K, 1 bar. The valve is opened and gases are allowed to mix, achieving an equilibrium state at 280 K. determine the entropy change of each gas and of the overall system, in kJ/K.arrow_forward
- Multiple choice Questions Question No. 2: When a system is taken from state A to state B through a reversible path 1 and again the system is taken to its initial state A from B through different reversible path 2, then what will be the effect on entropy? a.entropy increasesb.entropy decreasesc. entropy remains constantd. none of the abovearrow_forwardWhat does the exergy principle state? The exergy of an isolated system can never decreases, but always increases O The exergy of an isolated system can never increases, but always decreases O The exergy of an isolated system can either increases or decreases O None of the abovearrow_forwardFor the same initial and final states the change of entropy for constant .10 * volume process is greater than that for constant pressure process False True O According to the first law of thermodynamic the heat engine can.11 produce work less to the gross heat supplied False O True According to the second law of thermodynamic the heat engine can .12 * produce work equal to the gross heat supplied False O Truearrow_forward
- Define the Mechanisms of exergy transfer.arrow_forward3.1 For discussion: (a) Is it possible for exergy to be negative? Discuss. (b) Consider an evacuated space with volume V as the system. Eval- uate its exergy and discuss. PH associated with (c) Is it possible for the specific physical exergy e' a stream of matter to be negative? Discuss.arrow_forwardAt a pressure of 1 bar, a temperature of 17 °C and a mass flow of 0.3 kg/s, air enters a stable insulated compressor and exits at 3 bar, 147 °C. Determine the power required by the compressor and the exergy destruction in kW. Express the exergy disappearance as a percentage according to the power required by the compressor. Changes in kinetic and potential energy will be neglected. dead state; T0=17 °C, P0=1 bararrow_forward
- 3. A mole of an ideal, diatomic gas undergoes isothermal, reversible expansion from 1.0 cubic diameter to 10.0 cubic diameter at 100 degrees celsius. if the same gas undergoes irreversible expansion against a constant pressure of 1.00 bar, which of the following would change? a. internal energy b. entropy c. free energy d. enthalpyarrow_forwardApply exergy balance to closed systems and control volumes.arrow_forwardRelate between the entropy with the Clausius statement of the second thermodynamics law. [Note: The answer must include appropriate equations]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY