FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Using image below
Evaluate the exergy X1 of the initial state 1 and answer the following question: • Is the useful work in the process 1 → 2 → DS smaller, equal, or greater than exergy X1?
• Discuss your result
Solve correctly if 100% sure
p89#11. the work required to compare a gas reversibly according to pV1.30=c is 67,790J, if there is no flow. Determine change of internal energy and Q if the gas is (a)air,(b) methane. for methane,k=1.321,R=518.45J/kgm.K, Cv=1.6187, Cp=2.1377kJ/kgm.K
Knowledge Booster
Similar questions
- ANS IS P4: 4.68, 34.2, 8.41 [kJ/s], ƞ = 0.216arrow_forwardAnswer pleasearrow_forwardAt a pressure of 1 bar, a temperature of 17 °C and a mass flow of 0.3 kg/s, air enters a stable insulated compressor and exits at 3 bar, 147 °C. Determine the power required by the compressor and the exergy destruction in kW. Express the exergy disappearance as a percentage according to the power required by the compressor. Changes in kinetic and potential energy will be neglected. dead state; T0=17 °C, P0=1 bararrow_forward
- Q.6.A. Oxygen enters a nozzle with a negligible velocity at 440 K and 12 bar, and leaves at 1.9 bar. Determine the volumetric flow rate of the oxygen at the nozzle entrance if the nozzle exit area is 2.5 cm2 and the ratio of inlet temperature to the outlet equal 1.69. (Cy = 718 J/kg K and Cp = 1005 J/kg K)arrow_forwardDetermine the change in specific entropy, in kJ/kg K, of CO2 as an ideal gas undergoing a process from T, = 300 K, p, = 1 bar to T2 = 1420 K. P2 = 5 bar. Additional information g°= 1.70203 KJKG K °2 = 3.37901 kJikg K 1.215 kJ/kg. °C 1.215 kJkg. K 0 1.190 kJ/kg K O 1.373 kJ/kg Karrow_forwardAir with initial state at 12500 ft is allowed to expand isentropically to a state where pressure is 1100 psf. Calculate the specific weight after the expansion. a. 4.58x10^-3 lb/ft^3 b. 0.0458 lb/ft^3 c. 0.0458x10^-2 lb/ft^3 d. 0.0575 lb/ft^3 e. 458 lb/ft^3arrow_forward
- 4 An air nozzle has an efficiency of .90 and is adiabatic. air enters at p1=200 kPa, T1=1300 K with negligible velocity. air exits at p2=130 kPa. use dead state variables of T0=293 k and P0= 100 kPa and a variable heat capacity. what is t2 and the rate of exergy destruction?arrow_forwarduse table Table Derive expressions for the heat absorbed by the system for each of the following classes of reversible processes for one mole of an idea gas: (a) Case 1: Isothermal change in pressure (b) Case 2: Isobaric change in volume Hint: Case 1 with S = S(T,P); Case 2 with S = S(P,V) (c) Case 3: Isochoric (constant volume) change in temperature dV=Va dT-VB AP dS=CT dT-Va dP dU= (Cp-PVα) dT + V(PB - Ta) dP dH=Cp dT +V(I-Ta) dP dF=-(S+PVa) dT + VPB dP dG=-S dT + V dParrow_forwardA Gas enters an engine cylinder with volumetric analysis as follows: Oxygen =12.5%, Carbon Dioxide = 13% and nitrogen =74.5%.at the beginning of expansion, the temperature is 550° C, then expands reversibly with final to initial volume ratio of 6:1. If the process follows PV^1.25 = C, Calculate the heat flow in kJ/kgarrow_forward
- Correct answer will be upvoted.THANK YOU!!!arrow_forwardThe work required to compress a gas reversibly according to pV^1.30 = C is 67,790 J, if there is no flow. Determine change in U (in kJ) and Q (in kJ) if the gas is methane. For methane, k = 1.321, R = 518.45J/kg·K, cv = 1.6187, cp = 2.1377 J/kg·K. And also draw the P-V and T-S diagrams.arrow_forwardAnswer 94 and 95arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY