
(a)
Interpretation:
The absorption and emission transitions in the image are to be determined.
Concept introduction:
Atomic spectrum is a series of
Absorption spectra - When an atom is subjected to energy in the form of heat or light, the electrons absorb the energy. If an electron in a lower energy level absorbs a photon whose energy is equal to the difference in the energies of the lower energy level and a higher energy level, the electron jumps to the higher energy level. The absorption spectra are characterized by the presence of a series of dark lines separated by colored bands.
(a)

Answer to Problem 7.34P
The absorption transitions are A, C and D. The emission transitions are B, E, and F.
Explanation of Solution
The absorption of radiation by an electron takes place when it jumps from a lower energy level to a higher energy level. By the absorption of radiation, the electron gains energy and jumps to an energy level with a higher value of principal quantum number
The emission of radiation by an electron occurs when an electron loses energy and jumps from a higher to a lower energy level. Thus, by the emission of radiation, an electron makes a transition from an orbit with a higher principal quantum number to an orbit with a lower principal quantum number.
In the transition A, the electron jumps from
In the transition B, the electron jumps from
In the transition C, the electron jumps from
In the transition D, the electron jumps from
In the transition E, the electron jumps from
In the transition F, the electron jumps from
The absorption transitions are A, C and D. The emission transitions are B, E, and F.
(b)
Interpretation:
The increasing order of energy of emissions is to be determined.
Concept introduction:
Atomic spectrum is a series of electromagnetic radiations absorbed or emitted when electrons in an atom undergo transitions between different energy levels.
Emission spectra – In the emission spectra, an electron in the higher energy level jumps to a lower energy level by releasing energy. The emission spectra are characterized by the presence of a series of fine lines at specific wavelengths separated by black spaces.
The equation to find the difference in the energy between the two levels in hydrogen-like atoms is,
Here,
(b)

Answer to Problem 7.34P
The order of increasing energy of emissions is
Explanation of Solution
In the case of B, the transition of the electron has occurred from
Substitute 1 for
In the case of E, the transition of the electron has occurred from
Substitute 3 for
In the case of F, the transition of the electron has occurred from
Substitute 1 for
The order of increasing energy of emissions is
(c)
Interpretation:
The increasing order of the wavelengths for absorption transitions is to be determined.
Concept introduction:
Atomic spectrum is a series of electromagnetic radiations absorbed or emitted when electrons in an atom undergo transitions between different energy levels.
Absorption spectra - When an atom is subjected to energy in the form of heat or light, the electrons absorb the energy. If an electron in a lower energy level absorbs a photon whose energy is equal to the difference in the energies of the lower energy level and a higher energy level, the electron jumps to the higher energy level. The absorption spectra are characterized by the presence of a series of dark lines separated by colored bands.
The equation used to predict the position and wavelength of any line in a given series is called the Rydberg’s equation.
Rydberg’s equation is as follows:
Here,
The conversion factor to convert wavelength from
(c)

Answer to Problem 7.34P
The order of the increasing wavelength of absorption is
Explanation of Solution
The value of the Rydberg’s constant is
In the case of A, the transition of the electron has occurred from
Substitute
Convert the value of
In the case of C, the transition of the electron has occurred from
Substitute
Convert the value of
In the case of D, the transition of the electron has occurred from
Substitute
Convert the value of
The order of the increasing wavelength of absorption is
Want to see more full solutions like this?
Chapter 7 Solutions
Loose Leaf for Chemistry: The Molecular Nature of Matter and Change
- For Raman spectroscopy/imaging, which statement is not true regarding its disadvantages? a) Limited spatial resolution. b) Short integration time. c) A one-dimensional technique. d) Weak signal, only 1 in 108 incident photons is Raman scattered. e) Fluorescence interference.arrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c. (Please provide a full derivation of the equation for x from the equation for I). d) Calculate x for the 1645 cm-1 bandarrow_forwardI need help with the follloaingarrow_forward
- For a CARS experiment on a Raman band 918 cm-1, if omega1= 1280 nm, calculate the omega2 in wavelength (nm) and the CARS output in wavelength (nm).arrow_forwardI need help with the following questionarrow_forwardFor CARS, which statement is not true regarding its advantages? a) Contrast signal based on vibrational characteristics, no need for fluorescent tagging. b) Stronger signals than spontaneous Raman. c) Suffers from fluorescence interference, because CARS signal is at high frequency. d) Faster, more efficient imaging for real-time analysis. e) Higher resolution than spontaneous Raman microscopy.arrow_forward
- Draw the major product of the Claisen condensation reaction between two molecules of this ester. Ignore inorganic byproducts. Incorrect, 5 attempts remaining 1. NaOCH3/CH3OH 2. Acidic workup Select to Draw O Incorrect, 5 attempts remaining The total number of carbons in the parent chain is incorrect. Review the reaction conditions including starting materials and/or intermediate structures and recount the number of carbon atoms in the parent chain of your structure. OKarrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c d) Calculate x for the 1645 cm-1 bandarrow_forwardConvert 1.38 eV into wavelength (nm) and wavenumber (cm-1) (c = 2.998 x 108 m/s; h = 6.626 x 10-34 J*s).arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





