Concept explainers
At night the pupils of a certain woman’s eyes are 8 mm in diameter. (a) How many kilometers away from a car facing her will the woman be able to distinguish its headlights from each other? (b) What would the distance be if her pupils were 4 mm in diameter (say at twilight)? Assume that the headlights are 1.5 m apart, that the average
(a)
The range at which car’s head light can be distinguishable.
Answer to Problem 72E
The range at which car’s head light can be distinguishable is
Explanation of Solution
Given info:
The separation between the headlights is
Since the eyes attain only half of the resolving power, the distance will be half of the range obtain.
Write an expression to calculate the range at which car’s head light can be distinguishable.
Here,
Substitute
Thus, the range at which car’s head light can be distinguishable is
Conclusion:
The range at which car’s head light can be distinguishable is
(b)
The range at which car’s head light can be distinguishable.
Answer to Problem 72E
The range at which car’s head light can be distinguishable is
Explanation of Solution
Given info:
The separation between the headlights is
Since the eyes attain only half of the resolving power, the distance will be half of the range obtained.
Write an expression to calculate the range at which car’s head light can be distinguishable.
Here,
Substitute
Thus, the range at which car’s head light can be distinguishable is
Conclusion:
The range at which car’s head light can be distinguishable is
Want to see more full solutions like this?
Chapter 7 Solutions
Physical Universe
- The movable mirror of a Michelson interferometer is attached to one end of a thin metal rod of length 23.3 mm. The other end of the rod is anchored so it does not move. As the temperature of the rod changes from 15°C to 25 C , a change of 14 fringes is observed. The light source is a He Ne laser, =632.8 nm . What is the change in length of the metal bar, and what is its thermal expansion coefficient?arrow_forwardA horizontal laser beam of wavelength 632.8 nm has a circular cross section 2.00 nun in diameter. A rectangular aperture is to lie placed in the center of the beam so that when the light falls perpendicularly on a wall 4.50 m away, the central maximum fills a rectangle 110 mm wide and 6.00 mm high. The dimensions are measured between the minima bracketing the central maximum. Find the required (a) width and (b) height of the aperture. (c) Is the longer dimension of the central bright patch in the diffraction pattern horizontal or vertical? (d) Is the longer dimension of the aperture horizontal or vertical? (e) Explain the relationship between these two rectangles, using a diagram.arrow_forwardAs a single crystal is rotated in an x-ray spectrometer (Fig. 3.22a), many parallel planes of atoms besides AA and BB produce strong diffracted beams. Two such planes are shown in Figure P3.38. (a) Determine geometrically the interplanar spacings d1 and d2 in terms of d0. (b) Find the angles (with respect to the surface plane AA) of the n = 1, 2, and 3 intensity maxima from planes with spacing d1. Let = 0.626 and d0 = 4.00 . Note that a given crystal structure (for example, cubic) has interplanar spacings with characteristic ratios, which produce characteristic diffraction patterns. In this way, measurement of the angular position of diffracted x-rays may be used to infer the crystal structure. Figure P3.38 Atomic planes in a cubic lattice.arrow_forward
- Radio telescopes are telescopes used for the detection of radio emission from space. Because radio waves have much longer wavelengths than visible light, the diameter of a radio telescope must be very large to provide good resolution. For example, the radio telescope in Penticton, BC in Canada, has a diameter of 26 m and can be operated at frequencies as high as 6.6 GHz. (a) What is the wavelength corresponding to this frequency? (b) What is the angular separation of two radio sources that can be resolved by this telescope? (c) Compare the telescope’s resolution with the angular size of the moon.arrow_forwardA camera uses a lens with aperture 2.0 cm. What is the angular resolution of a photograph taken at 700 nm wavelength? Can it resolve the millimeter markings of a ruler placed 35 m away?arrow_forwardA light ray of wavelength 461.9 nm emerges from a 2-mm circular aperture of a krypton ion laser. Due to diffraction, the beam expands as it moves out. How large is the central bright spot at (a) 1 m, (b) 1 km, (c) 1000 km, and (d) at the surface of the moon at a distance of 400,000 km from Earth.arrow_forward
- Assuming the angular resolution found for the Hubble Telescope in Example 4.6, what is the smallest detail that could be observed on the moon?arrow_forwardAn electric current through hydrogen gas produces several distinct wavelengths of visible light. What are the wavelengths of the hydrogen spectrum, if they form first-order maxima at angles 24.2°, 25.7°, 29.1°, and 41.0° when projected on a diffraction grating having 10,000 lines per centimeter?arrow_forwardHow far apart must two objects be on the moon to be distinguishable by eye if only the diffraction effects of the eye’s pupil limit the resolution? Assume 550 nm for the wavelength of light, the pupil diameter 5.0 mm, and 400,000 km for the distance to the moon.arrow_forward
- Two slits each of width 1800 nm and separated by the center-to-center distance of 1200 nm are illuminated by plane waves from a krypton ion laser-emitting at wavelength 461.9 nm. Find the number of interference peaks in the central diffraction peak.arrow_forwardPluto and its moon Nix are separated by 48700 km. An undergraduate researcher wants to determine if the 5.08 m diameter Mount Palomar telescope can resolve these bodies when they are 6.40×10^9 km from Earth (neglecting atmospheric effects). Assume an average wavelength of 565 nm. To determine the answer, calculate the ratio of the telescope's angular resolution θT to the angular separation θPN of the celestial bodies.arrow_forwardThe resolving power of a microscope depends on the wavelength used. If you wanted to "see" an atom, a wavelength of approximately 1.00 x 10-11 m would be required.If photons are used, what is the minimum energy is required for obtaining required resolution?arrow_forward
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning