CHEMISTRY IN FOCUS W/ OWL (LL)>IP<
CHEMISTRY IN FOCUS W/ OWL (LL)>IP<
6th Edition
ISBN: 9781337306317
Author: Tro
Publisher: CENGAGE L
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 7.1YT
Interpretation Introduction

Interpretation:

The wavelength of electromagnetic radiation used to produce a modulation in amplitude is to be calculated.

Concept Introduction:

The distance between the two consecutive crests of a wave is called its wavelength.

Electromagnetic radiation is the type of energy that surrounds us and may lie in the visible region.

Modification or variation in amplitude is called amplitude modulation.

The wavelength of a radiation is given as follows:

λ=cν

Here, λ is the wavelength of the radiation, c is the speed of light and ν is the frequency of the radiation.

Expert Solution & Answer
Check Mark

Answer to Problem 7.1YT

Solution: 3.5×102 m

Explanation of Solution

Given information: The frequency of the radio signal is 840KHz.

First, the relationship between kilohertz and hertz is as follows:

1 KHz=1×103Hz840 KHz=(840KHz×1×103Hz1KHz)=840×103Hz

Also, the relationship between hertz and cycle per second is as follows:

1Hz=1cyclepersecond840×103Hz=(840×103Hz×1cyclepersecond1Hz)=840×103cyclespersecondor840×103s1

The wavelength of the radiation is calculated as follows:

λ=cν

Substitute 3×108 ms1 for c and 840×103 s1 for the value of ν in the above expression as follows:

λ=(3×108ms-1840×103 s-1)=3.5×102m

Conclusion

The wavelength of the electromagnetic radiation is 3.5×102m.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q2. Consider the hydrogenation of ethylene C2H4 + H2 = C2H6 The heats of combustion and molar entropies for the three gases at 298 K are given by: C2H4 C2H6 H2 AH comb/kJ mol‍¹ -1395 -1550 -243 Sº / J K¹ mol-1 220.7 230.4 131.1 The average heat capacity change, ACP, for the reaction over the temperature range 298-1000 K is 10.9 J K¹ mol¹. Using these data, determine: (a) the standard enthalpy change at 800 K (b) the standard entropy change at 800 K (c) the equilibrium constant at 800 K.
13. (11pts total) Consider the arrows pointing at three different carbon-carbon bonds in the molecule depicted below. Bond B Bond A Bond C a. (2pts) Which bond between A-C is weakest? Which is strongest? Place answers in appropriate boxes. Weakest Bond Strongest Bond b. (4pts) Consider the relative stability of all cleavage products that form when bonds A, B, AND C are homolytically cleaved/broken. Hint: cleavage products of bonds A, B, and C are all carbon radicals. i. Which ONE cleavage product is the most stable? A condensed or bond line representation is fine. ii. Which ONE cleavage product is the least stable? A condensed or bond line representation is fine. c. (5pts) Use principles discussed in lecture, supported by relevant structures, to succinctly explain the why your part b (i) radical is more stable than your part b(ii) radical. Written explanation can be no more than one-two succinct sentence(s)! Google
Print Last Name, First Name Initial Statifically more chances to abstract one of these 6H 11. (10pts total) Consider the radical chlorination of 1,3-diethylcyclohexane depicted below. 4 4th total • 6H total 래 • 4H total 21 total ZH 2H Statistical H < 3° C-H weakest - product abstraction here bund leads to thermo favored a) (6pts) How many unique mono-chlorinated products can be formed and what are the structures for the thermodynamically and statistically favored products? Product 6 Number of Unique Mono-Chlorinated Products Thermodynamically Favored Product Statistically Favored Product b) (4pts) Draw the arrow pushing mechanism for the FIRST propagation step (p-1) for the formation of the thermodynamically favored product. Only draw the p-1 step. You do not need to include lone pairs of electrons. No enthalpy calculation necessary H H-Cl Waterfox

Chapter 7 Solutions

CHEMISTRY IN FOCUS W/ OWL (LL)>IP<

Ch. 7 - Prob. 7ECh. 7 - What prevents large amounts of high-energy UV and...Ch. 7 - Prob. 9ECh. 7 - Prob. 10ECh. 7 - Prob. 11ECh. 7 - Prob. 12ECh. 7 - Prob. 13ECh. 7 - Prob. 14ECh. 7 - Prob. 15ECh. 7 - Prob. 16ECh. 7 - Describe how a laser works.Ch. 7 - Classify each of the following lasers as to type...Ch. 7 - Prob. 19ECh. 7 - Prob. 20ECh. 7 - Prob. 21ECh. 7 - Prob. 22ECh. 7 - Prob. 23ECh. 7 - The speed of sound is 330m/s. If fireworks are...Ch. 7 - The nearest star, Alpha Centauri, is 4.3 light-...Ch. 7 - Counting the seconds between a flash of lightning...Ch. 7 - Make a drawing, such as Figure 7.3, which shows...Ch. 7 - Make a drawing, such as Figure 7.3, which shows...Ch. 7 - Prob. 29ECh. 7 - Arrange the following three frequencies of light...Ch. 7 - Prob. 31ECh. 7 - Which wavelength of light is most likely to cause...Ch. 7 - List two types of electromagnetic radiation that...Ch. 7 - List two types of electromagnetic radiation that...Ch. 7 - Prob. 35ECh. 7 - Prob. 36ECh. 7 - Prob. 37ECh. 7 - Prob. 38ECh. 7 - Calculate the wavelength of the radio waves used...Ch. 7 - Calculate the wavelength of the radio waves used...Ch. 7 - Prob. 41ECh. 7 - Prob. 42ECh. 7 - Prob. 43ECh. 7 - A lamp emits red light of 671nm. What element is...Ch. 7 - Prob. 45ECh. 7 - Prob. 46ECh. 7 - Prob. 47ECh. 7 - Prob. 48ECh. 7 - Describe how white light interacts with a colored...Ch. 7 - Prob. 50ECh. 7 - Prob. 51ECh. 7 - Prob. 52ECh. 7 - Prob. 53ECh. 7 - Prob. 54ECh. 7 - Prob. 55ECh. 7 - Prob. 56ECh. 7 - Prob. 57ECh. 7 - Prob. 58ECh. 7 - Prob. 59E
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
    Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
  • Text book image
    Chemistry In Focus
    Chemistry
    ISBN:9781337399692
    Author:Tro, Nivaldo J.
    Publisher:Cengage Learning,
    Text book image
    Living by Chemistry
    Chemistry
    ISBN:9781464142314
    Author:Angelica M. Stacy
    Publisher:W. H. Freeman
    Text book image
    Principles of Modern Chemistry
    Chemistry
    ISBN:9781305079113
    Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
    Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,
Text book image
Living by Chemistry
Chemistry
ISBN:9781464142314
Author:Angelica M. Stacy
Publisher:W. H. Freeman
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY