Concept explainers
The work done by the gravitational force during a short interval in which the Earth moves through a displacement in its orbital path.

Answer to Problem 7.1QQ
Option (a) zero.
Explanation of Solution
The Earth revolve around the sun in an orbit and the orbit is perfectly circular.
Formula to calculate the work done by the gravitational force is,
Here,
Since, the Earth moves through a displacement in its orbital path and the orbital path is perfectly circular. So, the total displacement of the Earth in its orbital path is zero.
Substitute
Thus, the work done by the gravitational force during a short interval in which the Earth moves through a displacement in its orbital path is zero.
Conclusion:
The work done by the gravitational force is zero and the option (a) is zero. Thus option (a) is correct.
The work done by the gravitational force is zero but the option (b) is positive. Thus option (b) is incorrect.
The work done by the gravitational force is zero but the option (c) is negative. Thus, option (c) is incorrect.
The work done by the gravitational force is zero. It means the work done can be determined. Thus, option (d) is incorrect.
Want to see more full solutions like this?
Chapter 7 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- Identical rays of light enter three transparent blocks composed of different materials. Light slows down upon entering the blocks.arrow_forwardFor single-slit diffraction, calculate the first three values of (the total phase difference between rays from each edge of the slit) that produce subsidiary maxima by a) using the phasor model, b) setting dr = 0, where I is given by, I = Io (sin (10) ². 2arrow_forwardA capacitor with a capacitance of C = 5.95×10−5 F is charged by connecting it to a 12.5 −V battery. The capacitor is then disconnected from the battery and connected across an inductor with an inductance of L = 1.55 H . (D)What is the charge on the capacitor 0.0235 s after the connection to the inductor is made? Interpret the sign of your answer. (e) At the time given in part (d), what is the current in the inductor? Interpret the sign of your answer. (f) Atthe time given in part (d), how much electrical energy is stored in the capacitor and how much is stored in the inductor?arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning





