
Concept explainers
(a)
Find the quantity of water flowing through the sample per hour.
(a)

Answer to Problem 7.1CTP
The quantity of water flowing through the sample per hour is
Explanation of Solution
Given information:
The length of each soil layer
The total length of the soil layer H is 600 mm.
The diameter of the cylindrical tube d is 150 mm.
The constant head difference
The porosity of the soil layer I
The porosity of the soil layer II
The porosity of the soil layer III
The hydraulic conductivity of soil layer I
The hydraulic conductivity of soil layer II
The hydraulic conductivity of soil layer III
Calculation:
Determine the hydraulic conductivity in the vertical direction using the relation.
Substitute 600 mm for H, 200 mm for
Determine the hydraulic gradient using the relation.
Here, L is the total length of the soil layer.
Substitute 470 mm for
Determine the area of the cylindrical tube using the relation.
Substitute 150 mm for d.
Determine the rate of seepage per unit length of the dam using the relation.
Substitute
Therefore, the quantity of water flowing through the sample per hour is
(b)
Find the elevation head (Z), pressure head
(b)

Answer to Problem 7.1CTP
The elevation head (
The pressure head
The total head
The elevation head (
The pressure head
The total head
The elevation head (
The pressure head
The total head
The elevation head (
The pressure head
The total head
Explanation of Solution
Given information:
The length of each soil layer
The total length of the soil layer H is 600 mm.
The diameter of the cylindrical tube d is 150 mm.
The constant head difference
The porosity of the soil layer I
The porosity of the soil layer II
The porosity of the soil layer III
The hydraulic conductivity of soil layer I
The hydraulic conductivity of soil layer II
The hydraulic conductivity of soil layer III
Calculation:
Determine the elevation head (
Here,
Substitute 220 mm for
Therefore, the elevation head (
Determine the pressure head
Substitute 470 mm for
Therefore, the pressure head
Determine the total head
Substitute 690 mm for
Therefore, the total head
Determine the elevation head (
Substitute 220 mm for
Therefore, the elevation head (
Determine the value of
Substitute
Determine the total head
Substitute 470 mm for
Therefore, the total head
Determine the pressure head
Substitute 436.3 mm for
Therefore, the pressure head
Determine the elevation head
Substitute 220 mm for
Therefore, the elevation head (
Determine the value of
Substitute
Determine the total head
Substitute 436.3 mm for
The total head
Determine the pressure head
Substitute 432.3 mm for
Therefore, The pressure head
Determine the elevation head
Substitute 220 mm for
Therefore, the elevation head (
Determine the value of
Substitute
Determine the total head
Substitute 432.3 mm for
Therefore, the total head
Determine the pressure head
Substitute 432.3 mm for
Therefore, the pressure head
(c)
Plot the variation of the elevation head, pressure head, and the total head with the horizontal distance along the sample axis (X–X).
(c)

Explanation of Solution
Given information:
The length of each soil layer
The total length of the soil layer H is 600 mm.
The diameter of the cylindrical tube d is 150 mm.
The constant head difference
The porosity of the soil layer I
The porosity of the soil layer II
The porosity of the soil layer III
The hydraulic conductivity of soil layer I
The hydraulic conductivity of soil layer II
The hydraulic conductivity of soil layer III
Calculation:
Refer Part b)
Draw the graph between the elevation head pressure head, and the total head with the horizontal distance along the sample axis (X–X) as in Figure (1).
(d)
Plot the variation of the discharge velocity and the seepage velocity along the sample axis (X–X).
(d)

Explanation of Solution
Given information:
The length of each soil layer
The total length of the soil layer H is 600 mm.
The diameter of the cylindrical tube d is 150 mm.
The constant head difference
The porosity of the soil layer I
The porosity of the soil layer II
The porosity of the soil layer III
The hydraulic conductivity of soil layer I
The hydraulic conductivity of soil layer II
The hydraulic conductivity of soil layer III
Calculation:
Determine the discharge velocity v using the relation.
Substitute
Determine the seepage velocity of soil I using the relation.
Here,
Substitute 0.000843 cm/sec for v and 0.5 for
Determine the seepage velocity of soil II using the relation.
Here,
Substitute 0.000843 cm/sec for v and 0.6 for
Determine the seepage velocity of soil III using the relation.
Here,
Substitute 0.000843 cm/sec for v and 0.33 for
Draw graph of variation of the discharge velocity and the seepage velocity along the sample axis (X–X).
Refer Figure (1) in Part (c).
(e)
Find the height of the vertical columns of water inside piezometers A and B installed on the sample axis.
(e)

Answer to Problem 7.1CTP
The height of the vertical columns of water at point A is
The height of the vertical columns of water at point B is
Explanation of Solution
Given information:
The length of each soil layer
The total length of the soil layer H is 600 mm.
The diameter of the cylindrical tube d is 150 mm.
The constant head difference
The porosity of the soil layer I
The porosity of the soil layer II
The porosity of the soil layer III
The hydraulic conductivity of soil layer I
The hydraulic conductivity of soil layer II
The hydraulic conductivity of soil layer III
Calculation:
The height of water column is equal to the Piezometric or pressure head at a point.
Determine the height of water in point A.
Substitute 656.3 mm for
Therefore, the height of the vertical columns of water at point A is
Determine the height of water in point B.
Substitute 652.3 mm for
Therefore, the height of the vertical columns of water at point B is
Want to see more full solutions like this?
Chapter 7 Solutions
PRIN.OF GEOTECHNICAL...-MINDTAP(2 SEM)
- Design a cantilevered rectangular RC beam subjected to a maximum factored load bending moment, M u = 260 kip-ft. The clear height requirements for the building limits the total beam depth to 22 in. Determine the beam width and the steel design. Use f c’ = 6,000 psi, f y = 40,000 psi. The grade beam is cast against earth and permanently in contact with soil. a. Assume an initial steel ratio or beam width. b. Set up the bending design equation. c. Solve for either the steel ratio or the beam width. d. Design needed steel. 2 Hint: Knowing “h”, one can estimate the “d” value. So, two remaining variables can be estimated. There are many acceptable solutions. You can either assume a steel ration and solve for width “b”, or assume a beam width “b” and solve for the steel ratio. Remember that a good beam aspect ratio (d/b) is approximately 2.0arrow_forwardA 15 in. x 26 in. rectangular RC beam (shown in figure below) supports a service uniform dead load of 1.3 kip/ft and a service uniform live load of 1.6 kip/ft. The dead load includes the beam’s self-weight. Design the reinforcement required for maximum moments and show the design in sketches. Use f c ’ = 4,000 psi and f y = 60,000 psi. The beam is used in an open parking garage and is exposed to weather. a. Find factored maximum bending moments. b. Design for max. negative moment. c. Design for max. positive moment. Hint: Assume an initial beam shape (b, d), then solve for the needed reinforcements at the maximum negative and positive factored bending moments. This is like the class example.arrow_forwardA simply supported rectangular RC beam is to carry a uniform factored dead load of 1.2 kip/ftand a concentrated factored live load of 16 kip at mid-span. The beam self-weight is not includedin these loads. The concrete weighs 135 pcf. The span length is 25 ft. Please find the smallestsection allowed by ACI and design accordingly. Use f c’ = 5,000 psi, f y = 75,000 psi. Theexposure is interior with no weather exposure.a. Assume an arbitrary self-weight/ft of the beam.b. Find the maximum factored bending moment in the beam.c. Set up the moment equation and solve for the beam section.d. Revise the assumption if neededarrow_forward
- 3k a 5 I IKLF d 25 5' S' E=29000ksi I = 400 in 4 Ex = ? Q = ?arrow_forwardA simply supported rectangular RC beam is to carry a uniform factored dead load of 1.2 kip/ft and a concentrated factored live load of 16 kip at mid-span. The beam self-weight is not included in these loads. The concrete weighs 135 pcf. The span length is 25 ft. Please find the smallest section allowed by ACI and design accordingly. Use f c’ = 5,000 psi, f y = 75,000 psi. The exposure is interior with no weather exposure. a. Assume an arbitrary self-weight/ft of the beam. b. Find the maximum factored bending moment in the beam. c. Set up the moment equation and solve for the beam section. d. Revise the assumption if neededarrow_forwardIdeal gas Problems 3-1 The molecular weight of carbon dioxide, CO2, is 44. In an experiment the value y for CO2 was found to be 1.3. Assuming that CO2 is a perfect gas, calculate the gas constant, R, and the specific heats at constant pressure and constant volume, Cp, Cv (0.189 kJ/kg.K; 0.63kJ/kg.K; 0.819kJ/kg.K) 3-2 Oxygen, O2, at 200 bar is to be stored in a steel vessel at 20°C the capacity of the vessel is 0.04m³. Assuming that O₂ is a perfect gas, calculate the mass of oxygen that can be stored in the vessel. The vessel is protected against excessive pressure by a fusible plug which will melt if the temperature rises too high. At what temperature must the plug melt to limit the pressure in the vessel to 240bar? The molecular weight of oxygen is 32 (10.5 kg; 78.6°C) 3-3 A quantity of a certain perfect gas is compressed from an initial state of 0.085m³, 1 bar to a final state of 0.034m³, 3.9 bar. The specific heats at constant volume are 0.724 kJ/kg.K, and the specific heats at…arrow_forward
- A trapezoidal combined footing 5.5 m long is to supporttwo 400 mm square columns 5 meters apart. The center ofthe columns are both 0.25m away from property lines. Theleft column carries 675 kN while the right column 825 kN.The allowable soil pressure is 126 kPa. Assume footing is0.5m thick with soil backfill 0.7m thick. Weight of concreteis 23.6 kN/m3 and of soil is 20.4 kN/m3. 1. Determine the required footing area.2. Find the width of the smaller end of the footing.3. Calculate the width of the larger end of the footing.Ans:15.01m2, 2m, 3.5m please show the solution. Answer is providedarrow_forwardH.W: Evaluate the integral 1. 1 1 }} 0 y x²exy dxdy 2. 1 ܐy 2 dxdyarrow_forwardGiven the following end areas for cut & fill, complete the eart calculation using a shrinkage of 10%. Then draw the M.H.D. and the longitudinal pro of the earthworks & find the following: a) Limit of Economic Haul (L.E.H.). b) Freehaul volume (F.H.V.). c) Overhaul volume (O.H.V.). d) Waste volume. e) Borrow volume. f) Total cost of the earthworks. Given that: -Cost of overhaul = 30 ID/m².station. -Cost of borrow-120 ID/m³. - Cost of freehaul - 70 ID/m². -Freehaul Distance (F.H.D.)- 200m-2 stations. Areas (m²) Station Volumes (m) Cut Fill Cut+ Fill- 0 10 Corrected Fill- 1100 1 12 1300 2 14 1500 3 146 1500 14 350 550 250 275 10 5 16 96 1300 1430 6 1500 1650 14 7 1300 1430 12 S . 1000 1100 8 9 300 200 220 12 10 1400 16 11arrow_forward
- Calculate the clean bed head loss for a filter consisting of uniformly graded sphere silica beads (shape factor p = 1), all having a diameter of 1 mm, packed into a 5 m x 5 m filter bed with depth D = 8 m, with a bed porosity of ε = 0.4, treating a flow rate of 0.025 m³/s. Assume a viscosity of 1.25x10-6 m2/s. Report your answer with the units of meters and round to the nearest 0.1.arrow_forwardUsing the book Olin's Construction: Principles, Materials, and Methods By H. Leslie SimmonsUsing Materials for a Small Residential House Compile A detailed list of every single material used in the construction of this small Residential Home. Your list will be broken up into 5 stages FOUNDATION, FRAMING, ROUGH IN, ROOF, FINISH You do not need to estimate the quantity of materials. Choose the exterior and interior finishes. Find 3 SDS sheets for materialsfor each stage of the build . REMEMBER EVERY ITEM MISSED IN AN ESTIMATE WILL COST YOU MONEY. HOUSE DETAILS • Slab foundation • UTILITIES AND GROUND WORK IS COMPLETED . • Single Story • Copper plumbing or PEX 2x6 Wood Framing Gas Water Heater Gas appliances ROOF: asphalt shingles , Stick framing, Cross hipped roof House has Heating and A/C EXAMPLE: FOUNDATION Concrete Wood For formsarrow_forwardA1.4- Determine the factored moment resistance for the flanged beam (simply supported) shown in Figure 4. Given: Beam span L = 8m fc = 25MPa fy=400MPa As = 3-35M *350* mm 1.5 m Figure 4 *350* mm -60mmarrow_forward
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning


