A First Course In Probability, Global Edition
10th Edition
ISBN: 9781292269207
Author: Ross, Sheldon
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 7.18TE
To determine
To calculate: the estimate having the lowest possible variance of value
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Suppose X and Y are independent. X has a mean of 1 and variance of 1, Y has a mean of 0, and variance of 2.
Let S=X+Y, calculate E(S) and Var(S).
Let Z=2Y^2+1/2 X+1 calculate E(Z). Hint: for any random variable X, we have Var(X)=E(X-E(X))^2=E(X^2 )-(E(X))^2, you may want to find EY^2 with this.
Calculate cov(S,X). Hint: similarly, we have cov(Z,X)=E(ZX)-E(Z)E(X),
Calculate cov(Z,X).
Are Z and X independent? Are Z and Y independent? Why?
What about mean independence?
Suppose that X₁, X₂,
Xn and Y₁, Y2, .
Yn are independent
random samples from populations with means ₁ and ₂ and variances of and o2,
respectively. Show that X - Y is a consistent estimator of μ₁ - 2.
Show that the mean of a random sample of size n from
an exponential population is a minimum variance unbi-ased estimator of the parameter θ.
Chapter 7 Solutions
A First Course In Probability, Global Edition
Ch. 7 - A player throws a fair die and simultaneously...Ch. 7 - The game of Clue involves 6 suspects, 6 weapons,...Ch. 7 - Gambles are independent, and each one results in...Ch. 7 - Prob. 7.4PCh. 7 - The county hospital is located at the center of a...Ch. 7 - A fair die is rolled 10 times. Calculate the...Ch. 7 - Suppose that A and B each randomly and...Ch. 7 - N people arrive separately to a professional...Ch. 7 - A total of n. balls, numbered 1 through n, are put...Ch. 7 - Consider 3 trials, each having the same...
Ch. 7 - Consider n independent flips of a coin having...Ch. 7 - A group of n men and n women is lined up at...Ch. 7 - A set of 1000 cards numbered 1 through 1000 is...Ch. 7 - An urn has m black balls. At each stage, a black...Ch. 7 - In Example 2h, say that i and j, ij form a matched...Ch. 7 - Let Z be a standard normal random variable, and,...Ch. 7 - A deck of n cards numbered 1 through n is...Ch. 7 - Cards from an ordinary deck of 52 playing cards...Ch. 7 - Prob. 7.19PCh. 7 - Prob. 7.20PCh. 7 - For a group of 100 people, compute a. the expected...Ch. 7 - How many times would you expect to roll a fair die...Ch. 7 - Urn I contains 5 white and 6 black balls, while...Ch. 7 - A bottle initially contains m large pills and n...Ch. 7 - Let X1,X2... be a sequence of independent and...Ch. 7 - If X1,X2,....Xn are independent and identically...Ch. 7 - If 101 items are distributed among 10 boxes, then...Ch. 7 - Prob. 7.28PCh. 7 - There are 4 different types of coupons, the first...Ch. 7 - If X and Y are independent and identically...Ch. 7 - Prob. 7.31PCh. 7 - Prob. 7.32PCh. 7 - If E[X]=1 and Var(X)=5, find a. E[(2+X)2]: b....Ch. 7 - If 10 married couples are randomly seated at a...Ch. 7 - Cards from an ordinary deck are turned face up one...Ch. 7 - Let X be the number of ls and F the number of 2s...Ch. 7 - A die is rolled twice. Let X equal the sum of the...Ch. 7 - Suppose X and Y have the following joint...Ch. 7 - Suppose that 2 balls are randomly removed from an...Ch. 7 - Prob. 7.40PCh. 7 - Let X1,... be independent with common mean and...Ch. 7 - Prob. 7.42PCh. 7 - A pond contains 100 fish, of which 30 are carp. If...Ch. 7 - A group of 20 people consisting of 10 men and 10...Ch. 7 - Let X1,X2,...,Xn be independent random variables...Ch. 7 - Between two distinct methods for manufacturing...Ch. 7 - Prob. 7.47PCh. 7 - Consider the following dice game. as played at a...Ch. 7 - Prob. 7.49PCh. 7 - A fair die is successively rolled. Let X and Y...Ch. 7 - There are two misshapen coins in a box; their...Ch. 7 - The joint density of X and Y is given by...Ch. 7 - The joint density of X and Y is given by...Ch. 7 - A population is made up of r disjoint subgroups....Ch. 7 - A prisoner is trapped in a cell containing 3...Ch. 7 - Consider the following dice game: A pair of dice...Ch. 7 - Ten hunters are waiting for ducks to fly by. When...Ch. 7 - The number of people who enter an elevator on the...Ch. 7 - Suppose that the expected number of accidents per...Ch. 7 - A coin having probability p of coming up heads is...Ch. 7 - A coin that comes up heads with probability p is...Ch. 7 - There are n+1 participants in a game. Each person...Ch. 7 - Each of m+2 players pays 1 unit to a kitty in...Ch. 7 - The number of goals that J scores in soccer games...Ch. 7 - Prob. 7.65PCh. 7 - Prob. 7.66PCh. 7 - Prob. 7.67PCh. 7 - Prob. 7.68PCh. 7 - Type i light bulbs function for a random amount of...Ch. 7 - The number of winter storms in a good year is a...Ch. 7 - In Example 5c, compute the variance of the length...Ch. 7 - Prob. 7.72PCh. 7 - The number of accidents that a person has in a...Ch. 7 - Repeat Problem 7.73 when the proportion of the...Ch. 7 - Consider an urn containing a large number of...Ch. 7 - In problem ,suppose that the coin is tossed n...Ch. 7 - Suppose that in Problem 7.75, we continue to flip...Ch. 7 - In Example 6b, let S denote the signal sent and R...Ch. 7 - In Example 6c y)2].Ch. 7 - The moment generating function of X is given by...Ch. 7 - Let X be the value of the first die and Y the sum...Ch. 7 - The joint density of X and Y is given by...Ch. 7 - Prob. 7.83PCh. 7 - Successive weekly sales, in units of $1,000, have...Ch. 7 - Show that E[(Xa)2] is minimized at a=E[X].Ch. 7 - Suppose that X is a continuous random variable...Ch. 7 - Prob. 7.3TECh. 7 - Let X be a random variable having finite...Ch. 7 - Prob. 7.5TECh. 7 - Prob. 7.6TECh. 7 - Prob. 7.7TECh. 7 - We say that X is stochastically larger than Y,...Ch. 7 - Prob. 7.9TECh. 7 - A coin having probability p of landing on heads is...Ch. 7 - Let X1,X2,....Xn be independent and identically...Ch. 7 - Prob. 7.12TECh. 7 - Let X1,X2,... be a sequence of independent random...Ch. 7 - Prob. 7.14TECh. 7 - Prob. 7.15TECh. 7 - Prob. 7.16TECh. 7 - Prob. 7.17TECh. 7 - Prob. 7.18TECh. 7 - In Example 41 t, we showed that the covariance of...Ch. 7 - Show that X and Y are identically distributed and...Ch. 7 - Prob. 7.21TECh. 7 - Prob. 7.22TECh. 7 - Prob. 7.23TECh. 7 - Show that Z is a standard normal random variable...Ch. 7 - Prove the Cauchy-Schwarz inequality, namely,...Ch. 7 - Show that if X and Y are independent, then...Ch. 7 - Prove that E[g(X)YX]=g(X)E[YX].Ch. 7 - Prove that if E[YX=x]=E[Y] for all x, then X and Y...Ch. 7 - Prob. 7.29TECh. 7 - Let X1,...,Xn be independent and identically...Ch. 7 - Consider Example 4f, which is concerned with the...Ch. 7 - An urn initially contains b black and w white...Ch. 7 - For an event A, let IA equal 1 if A occurs and let...Ch. 7 - A coin that lands on heads with probability p is...Ch. 7 - For another approach to Theoretical Exercise 7.34,...Ch. 7 - The probability generating function of the...Ch. 7 - One ball at a time is randomly selected from an...Ch. 7 - Prob. 7.38TECh. 7 - Prob. 7.39TECh. 7 - The best quadratic predictor of Y with respect to...Ch. 7 - Use the conditional variance formula to determine...Ch. 7 - Let X be a normal random variable with parameters...Ch. 7 - It follows from Proposition 6.1 and the fact that...Ch. 7 - Show that for random variables X and Z,...Ch. 7 - Prob. 7.45TECh. 7 - Verify the formula for the moment generating...Ch. 7 - For a standard normal random variable Z, let...Ch. 7 - Prob. 7.48TECh. 7 - Prob. 7.49TECh. 7 - The positive random variable X is said to be a...Ch. 7 - Let X have moment generating function M(t), and...Ch. 7 - Use Table 7.2 to determine the distribution of...Ch. 7 - Show how to compute cov(X,Y) from the joint moment...Ch. 7 - Suppose that X1,...,Xn have a multivariate normal...Ch. 7 - If Z is a standard normal random variable, what is...Ch. 7 - Suppose that Y is a normal random variable with...Ch. 7 - Consider a list of m names, where the same name...Ch. 7 - Prob. 7.2STPECh. 7 - Prob. 7.3STPECh. 7 - Prob. 7.4STPECh. 7 - Prob. 7.5STPECh. 7 - Prob. 7.6STPECh. 7 - Prob. 7.7STPECh. 7 - Prob. 7.8STPECh. 7 - Prob. 7.9STPECh. 7 - Prob. 7.10STPECh. 7 - Prob. 7.11STPECh. 7 - Prob. 7.12STPECh. 7 - Prob. 7.13STPECh. 7 - Prob. 7.14STPECh. 7 - Prob. 7.15STPECh. 7 - Prob. 7.16STPECh. 7 - Prob. 7.17STPECh. 7 - Prob. 7.18STPECh. 7 - There are n items in a box labeled H and m in a...Ch. 7 - Let X be a nonnegative random variable having...Ch. 7 - Let a1,...,an, not all equal to 0, be such that...Ch. 7 - Prob. 7.22STPECh. 7 - Prob. 7.23STPECh. 7 - Prob. 7.24STPECh. 7 - Prob. 7.25STPECh. 7 - Prob. 7.26STPECh. 7 - Prob. 7.27STPECh. 7 - Prob. 7.28STPECh. 7 - Prob. 7.29STPECh. 7 - Prob. 7.30STPECh. 7 - Prob. 7.31STPECh. 7 - Prob. 7.32STPECh. 7 - Prob. 7.33STPE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- Suppose that X and Y are independent random variables with EX=EY=100, and E[min(X,Y))=79. Find ElX-Y|, (the mean of the absolute value of X-Y).arrow_forwardLet X1 and X2 be two independent random variables with common mean E(X1) = E(X2) = µ. The variance of X1 is 1 and the variance of X2 is 16. Consider estimators of u described by û = W1X1 + W2X2 for some constants w1 and w2 that you can choose. (a) Say that w2 the estimate unbiased for all w1? = a – bw1 for some constants a and b. What values of a and b would makearrow_forwardLet X be a random variable and a real number. Show that E(X - a)² = varX + (µ − a)² Hereμ = EX is the expected value of the random variable X and varX = E(X - μ)^2 is the variance of the random variable X. Guidance: start from the representation - (X-a)^2 = (X µ + μ- a)^2 and group the right side of the representation appropriately into the form (Z + b)^2, where Z is some random variable and b is a real number and open the square. The task should be solved with the help of the expected value calculation rules.arrow_forward
- Consider two independent exponential random variables X1 and X2 with parameter lambda=1. LetY1 = X1 Y2 = X1 + X2. Find the MMSE estimate of Y1 using Y2.arrow_forwardWe have a random variable X1 defined on Population 1. X1 has a mean value of 52 with a population standard deviation of 3. The random variable X2 is defined on Population 2 and X2 has a mean value of 50 with a population standard deviation of 4. We obtain a random sample of 625 elements from Population 1, and independently we obtain a random sample of 625 elements from Population 2. Find the probability that the difference in the sample averages X1- X2 is at least 2.5.arrow_forwardSuppose that X and Y are independent random variables with finite variances such that E(X) = E(Y). Show that: E[(X-Y)2] =Var(X) +Var(Y)arrow_forward
- The input voltage to a rectifier is the continuous uniform (-1, 1) random variable U. The rectifier output is a random variable W defined by W = = g(U) = { ° U < 0 U U20 What is the variance of W?arrow_forwardB) Let X1,X2, .,Xn be a random sample from a N(u, o2) population with both parameters unknown. Consider the two estimators S2 and ô? for o? where S2 is the sample variance, i.e. s2 =E,(X, – X)² and ở² = 'E".,(X1 – X)². [X = =E-, X, is the sample mean]. %3D n-1 Li%3D1 [Hint: a2 (п-1)52 -~x~-1 which has mean (n-1) and variance 2(n-1)] i) Show that S2 is unbiased for o2. Find variance of S2. ii) Find the bias of 62 and the variance of ô2. iii) Show that Mean Square Error (MSE) of ô2 is smaller than MSE of S?. iv) Show that both S2 and ô? are consistent estimators for o?.arrow_forwardSuppose the random variable Y has a mean of 21 and a variance of 36. Let Z = √36 Show that #z=0. Show that o₂ = 1. (Y-21). #₂ = E(Y-D] -0--0 (Round your responses to two decimal places) o = var (Y-] )- (Round your responses to two decimal places)arrow_forward
- If X₁, X₁, X3, ..., xn are random sample from a population with mean µ and variance o², then what is ε[(x₁ - μ)(X; -μ)] for ij, i = 1,2,3,..., n?arrow_forwardA random variable X has only two values a and b with P(X = a) = p , P(X = b) = q (p + q = 1).Find its mean value and variation.arrow_forwardLet Y1, Y2, Y3, Y4, and Y, be i.i.d. random variables from a population with mean µ and variance o². Further, let Y = (Y, +Y½ +Y3 +Y4+Y;) denote the average of these five random variables. Now consider a different estimator of µ called W w = }Y + }Y½ + }Y, + }Y, + Y, What is the variance of W? That is, calculate Var|W] Hint: Use the properties of expectations, variances, etc. 187 800 800 187arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License