
Concept explainers
(a)
Plot the shear force and bending moment diagram for the beam.
Find the magnitude and location of the maximum absolute value of the bending moment.
(a)

Answer to Problem 7.161RP
The location and magnitude of the maximum absolute bending moment is
Explanation of Solution
Given information:
The moment applied at A is
Calculation:
Show the free-body diagram of the entire beam as in Figure 1.
Find the vertical reaction at point B by taking moment about point A.
Find the vertical reaction at point A by reoslving the vertical component of forces.
Resolve the horizontal component of forces.
Consider the section AC:
Consider a section at a distance x from left end A.
Show the free-body diagram of the section as in Figure 2.
Resolve the vertical component of forces.
Take moment about the section.
At
Substitute 0 for x in Equation (1).
Substitute 0 for x in Equation (2).
At
Substitute 4 ft for x in Equation (1).
Substitute 4 ft for x in Equation (2).
Consider the section CB:
Show the free-body diagram of the section as in Figure 3.
Resolve the vertical component of forces.
Take moment about the section.
At
Substitute 4 ft for x in Equation (3).
At
Substitute 8 ft for x in Equation (3).
Tabulate the shear force values as in Table 1.
Location, x ft | Shear force, kips |
0 | 12 |
4 | –4 |
8 | –4 |
Plot the shear force diagram as in Figure 4.
The maximum bending moment occurs where the shear force changes sign.
Refer to the Figure 4, the shear force changes in the section AC.
Substitute 0 for V in Equation (1).
Substitute 3 ft for x in Equaiton (2).
Tabulate the bending moment values as in Table 2.
Location, x ft | Bending moment, kips-ft |
0 | 0 |
3 | 18 |
4 | 16 |
8 | 0 |
Plot the bending moment values as in Figure 5.
Therefore, the location and magnitude of the maximum absolute bending moment is
(b)
Plot the shear force and bending moment diagram for the beam.
Find the magnitude and location of the maximum absolute value of the bending moment.
(b)

Answer to Problem 7.161RP
The location and magnitude of the maximum absolute bending moment is
Explanation of Solution
Given information:
The moment applied at A is
Calculation:
Show the free-body diagram of the entire beam as in Figure 6.
Find the vertical reaction at point B by taking moment about point A.
Find the vertical reaction at point A by reoslving the vertical component of forces.
Resolve the horizontal component of forces.
Consider the section AC:
Consider a section at a distance x from left end A.
Show the free-body diagram of the section as in Figure 7.
Resolve the vertical component of forces.
Take moment about the section.
At
Substitute 0 for x in Equation (4).
Substitute 0 for x in Equation (5).
At
Substitute 4 ft for x in Equation (4).
Substitute 4 ft for x in Equation (5).
Consider the section CB:
Show the free-body diagram of the section as in Figure 8.
Resolve the vertical component of forces.
Take moment about the section.
At
Substitute 4 ft for x in Equation (6).
At
Substitute 8 ft for x in Equation (6).
Tabulate the shear force values as in Table 3.
Location, x ft | Shear force, kips |
0 | 9 |
4 | –7 |
8 | –7 |
Plot the shear force diagram as in Figure 9.
The maximum bending moment occurs where the shear force changes sign.
Refer to the Figure 4, the shear force changes in the section AC.
Substitute 0 for V in Equation (4).
Substitute 2.25 ft for x in Equaiton (5).
Tabulate the bending moment values as in Table 4.
Location, x ft | Bending moment, kips-ft |
0 | 0 |
2.25 | 34.125 |
4 | 28 |
8 | 0 |
Plot the bending moment values as in Figure 10.
Therefore, the location and magnitude of the maximum absolute bending moment is
Want to see more full solutions like this?
Chapter 7 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
- Hi, can you please assist with the attached question please. Please do not use Ai software. Many thanks.arrow_forwarddetermine the allowable bending and contact stresses for a grade 1 steel through-hardened to 250 HB. Assume the desired reliability is 50% and that the pinion and gear have the same hardness and the gear encounters hydrodynamic lubrication and is to last ten million cyclesarrow_forwardUsing the four-point bending tool, detail the influence of both applied load and notch size on the transverse strain. Cover the following points in your answer. a. A detailed description of the methodology you have used to create a set of results suitable to answer this question. Include details on the placement of line scans, the loads used, etc. (there is no need to describe the process of extracting the data from the interactive or the fundamental principles behind DIC). (5 marks) b. A description of the results you have found, including a written description, images, and both vertical and horizontal line scans from the four-point bending tool. Include a minimum of three loads and three notch sizes in your results. (20 marks) c. The conclusions you can make regarding the influence of load and notch size on the strain experienced by the beam based on the data you collect. (5 marks) To achieve full marks, you will need to include the following in your work: • properly labelled graphs…arrow_forward
- Using the four-point bending tool, discuss how measurements of transverse strain using DIC and compare with those from the strain gauge attached at the centre top of the specimen. In your answer, include the following: a. A short explanation of how each of the strain measurement techniques works. (4 marks) b. A description of the methodology you have used to make the data that you discussed from each technique as comparable as possible. (6 marks) c. A set of figures (images, graphs and/or tables as necessary) with appropriate captions demonstrating the comparability of data extracted from the two strain measurement methods. This should include at least three different applied loads. (10 marks) d. A brief description of the findings. (5 marks)arrow_forwardAn undamped single-degree-of-freedom system consists of a spring with stiffness k = 10 kip/in and a mass weighing W = 10 kips. The system is at rest and it is suddenly subjected to a half-cycle sine pulse force. The pulse force has an amplitude po = 1 kips and time duration td = 0.1 seconds. Calculate the maximum restoring force in the spring due to the pulse force.arrow_forwardm=400mm n=300mm q=28mm r=20mm P=0.9kNarrow_forward
- determine the allowable bending and contact stresses for a Grade 1 steel through-hardened to 250 HB. Assume the desired reliability is 50 %and that the pinion and gear have the same hardness and it is expected that the gear will encounter 100,000 load cyclesarrow_forwardPlease can you plot the Mohr's strain circle using the above informarrow_forwardA gearbox has permanent shaft positions defined by the bearing mounting positions, but the gear ratio can be changed by changing the number of teeth in the pinion and gear. To achieve similar power transmission ability for different gear ratios, a manufacturer chooses to have the same module for two different gearboxes. One of the gaerboxes has a pinion with 22 teeth, a gear with 68 teeth, and a center distance of 225mm. How large is the gear module and which gear ratios are possible for a pinion with 22 or more teeth using the same module?arrow_forward
- A gear train has a 50.3 mm circular pitch and a 25 degree pressure angle and meshes with a pinion having 12 teeth Design this gear train to minimize its volume and the total number of teeth. Obtain the pitch diameters the number of teeth the speed ratio the center distance and the module of this gear train. The gearbox housing has a diameter of 620mmarrow_forwardHandwritten solution required ,strictly do not use CHATGPT. MECHANICAL ENGGarrow_forwardSolve, use engineering economic tablesarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





