FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Twenty pounds of air initially at 1560°R, 3 atm fills a rigid tank. The air is cooled to 1040°R, 2 atm. For the air modeled as an ideal gas:
a) Indicate the initial state, final state, and dead state on a T-v diagram
b) Determine the heat transfer, in Btu
c) Determine the change in exergy, in Btu, and interpret the sign using the T-v diagram of part (a)
Let To = 520°R, Po = 1 atm and ignore the effects of motion and gravity.
ANS IS P4: 4.68, 34.2, 8.41 [kJ/s], ƞ = 0.216
A domestic water heater holds 189 L of water at 60°C, 1 atm. Determine the exergy of the hot water, in kJ.
To what elevation, in m, would a 1000-kg mass have to be raised from zero elevation relative to the reference
environment for its exergy to equal that of the hot water? Let To = 298 K, po = 1 atm, g = 9.81 m/s².
Knowledge Booster
Similar questions
- Four kilograms of a two-phase liquid-vapor mixture of water initially at 300°C and x, = 0.5 undergo the two different processes 7.33 described below. In each case, the mixture is brought from the initial state to a saturated vapor state, while the volume remains constant. For each process, determine the change in exergy of the water, the net amounts of exergy transfer by work and heat, and the amount of exergy destruction, each in kJ. Let To = 300 K, Po =1 bar, and ignore the effects of motion and gravity. Comment on the difference between the exergy destruction values. a. The process is brought about adiabatically by stirring the mixture with a paddle wheel. Answer b. The process is brought about by heat transfer from a thermal reservoir at 610 K. The temperature of the water at the location where the heat transfer occurs is 610 K Answerarrow_forwardUsing image below Evaluate the exergy X1 of the initial state 1 and answer the following question: • Is the useful work in the process 1 → 2 → DS smaller, equal, or greater than exergy X1? • Discuss your resultarrow_forward1. The first law of thermodynamics discussesa. Thermal equilibriumb. Energy conservationc. Direction of heat flowd. Entropy is zero at absolute zero temperature 2. A tank contains 1 kg mass gas whose density is 700 kg/m3. The pressure is increased from 1 bar to 3 bar. The approximate specific boundary work of the system isa. Cannot be find since some data is missingb. 285 kJ/kgc. 0 kJ/kgd. 0.285 kJ/kg 3. The nozzle is a device in whicha. Area decreases b. Area increasesc. Velocity decreases d. Velocity increases 4. Choose the correct statement/s with respect to entropy change during a processa. Entropy increases with increase in pressure at constant temperatureb. Entropy increases with increase in temperature at constant pressurec. Entropy can be kept constant by systematically increase both pressure and temperatured. Entropy can not be changed 5. The isentropic process is also called asa. Adiabatic processb. Irreversible adiabatic processc. Reversible adiabatic processd. Reversible…arrow_forward
- A domestic water heater holds 189 L of water at 60°C, 1 atm. Determine the exergy of the hot water, in kJ. To what elevation, in m, would a 1000-kg mass have to be raised from zero elevation for its exergy to equal that of the hot water? Let T0 = 298 K, p0 = 1 atm, g = 9.81 m/s2 .arrow_forward6. A certain quantity of gas occupies 0.56 m³ at 400° C and 28 bar. Determine the gain in entropy if the gas expands isothermally to a final volume of 2.8 m². R= 287 J/kg K. the following creas Ans. 3.746 kJ/KIarrow_forwardA balloon filled with helium at 20°C, 1 bar and a volume of 0.5 m³ is moving with a velocity of 15 m/s at an elevation of 0.5 km relative to an exergy reference environment for which To = 20°C, po = 1 bar. Using the ideal gas model with k = 1.67, determine the specific exergy of the helium, in kJ.arrow_forward
- Determin the exergy, in kJ, of the contents of a 1.5 m3 storage tank, if the tank is filled with: a) air as an ideal gas at 440°C and 0.70 bar b) water vapor at 440°C and 0.70 bar Ignore the effects of motion and gravity and let To = 22°C and Po=1 bar.arrow_forwardAnswer 94 and 95arrow_forwardQ.1 A insulated container is divided into two parts ,one containing the oxygen and other nitrogen at same temperature and pressure. The number of kilo moles of each is 2 and 4 respectively. The partition is removed and the gas is allowed to mix. What is the entropy generated in the process? A 31.751 kJ/K В -37.751 kJ/K C C 24.751 kJ/K D -24.751 kJ/Karrow_forward
- Determine the change in exergy in kJ for each of the following processes in the system with 1 kg of steam at 20 bar and 240 °C initially. a) In case the system is heated to double its volume at constant pressure. b) In case of expansion by doubling the system volume isothermally. dead state; T0=20 °C, P0=1 bararrow_forwardQUESTION 19 The mass of CO2 is 0.066 kg in a system (with molar mass 44 kg/kmol), occupying a volume of 0.026 m³ at 0.9 bar is compressed reversibly until the pressure is 5.33 bar. If the molar (universal) gas constant as 8.3145 kJ/kmol K, calculate the final temperature (in C) when the process is isothermal. Answer to 3 d.p. No need for unitarrow_forwardIf heating from saturated liquid to saturated vapor would occur at 100°C (373.15 K), evaluate the exergy transfers accompanying heat transfer and work, each in kJ/kg. Ans. 484, 0.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY