EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
9th Edition
ISBN: 9781119321453
Author: Sonntag
Publisher: JOHN WILEY+SONS,INC.-CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 7.14P
A condenser receives R−410A at −20°C and quality 80%, with the exit flow being saturated liquid at −20°C. Consider the cooling to be a reversible process and find the specific heat transfer from the entropyequation.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An adiabatic turbine has an efficiency of 90%. If air is compressed from 1100kpa and 227 degree Celsius to 101kpa. Find the work done and final temperature. Sketch process on T-S diagram.
A condenser (heat exchanger) brings 1 kg/s water flow at 10 kPa quality 95% to saturated liquid at 10 kPa. The cooling is done by lake water at 20 degree Celsius that returns to the lake at 30 degree Celsius. For an insulated condenser, find the flow rate of cooling water.
The pressure and temperature entering the turbine is 1800kpaa and 380oC. The temperature leaving the turbine is 20kpa. The quality of steams entering the condenser is 90%. Find the turbine work in kJ/kg.
Chapter 7 Solutions
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water at 50°C is cooled in a cooling tower which has an efficiency of 65%. The temperature of the surrounding air is 35°C dry bulb and 70% relative humidity. The heat dissipated from the condenser is 2,000,000kJ/hr. Find the capacity in liters per second of the pump used in the cooling tower.arrow_forward2. 1 kg/s steam enters the turbine at 2.5MPa and 500C while leaving at 10kPa with 89% quality. The pump exit condition is at 2.5 MPa and 50C. Find the turbine work output and heat added in the boiler in kW. (20 points)arrow_forwardA heat exchanger is used to cool an air flow from 900 to 400 K, with both states at 1 MPa. The coolant is water flow at 20 degrees C and 0.1 MPa. If the water leaves a saturated vapor, find the ratio of the flow rates (mass flowwater/mass flowair.arrow_forward
- A steam with a quality of 49%, enters an adiabatic nozzle at 3.5 MPa and leaves at 0.4 MPa and 140 oC with a flow of 7 m/s. Find the entrance velocity, in m/s.arrow_forwardI need help on the following question: The vapour compression cycle (picture provided), utilises the refrigerant R134a flowing at 0.05 kg s-1. Assuming that the compression is adiabatic and reversible. If the actual input power to the compressor is 2 kW, then: 1. You need to determine the theoretical input power to the compressor and the heat transfer (Φ) to theevaporator. Take the enthalpies h1, h2, and h3 to be 238.41, 263.68 and 81.5 kJ kg-1 (use the 'NH3 Refrigeration Table' where you can find online). 2. You need to determine the coefficient of performance based on your answer to the previous question (1). 3. You need to determine the compressors mechanical efficiency.arrow_forwardA closed constant volume system receives 10.5 kJ of paddle work. The system contains oxygen at 344 kPa, 278 K and 0.06 m3. Find the heat loss if the final temperature is 400 K.arrow_forward
- Solve this problem.arrow_forwardA steam is expanded through a nozzle and the enthalphy drop per kg of steam from the initial pressure to the final pressure is 70 kJ. Neglecting the friction, find the velocity of discharge.arrow_forwardSteam is admitted to a turbine at 600 psia and 740 F ,and exhausts to a condenser at a pressure of 1 psia . Assuming the process to be isentropic , find the drop in enthalpy , Btu/lb .arrow_forward
- Air enters an insulated compressor at ambient conditions, 100 kPa, 20oC at the rate of0.2 kg/s and exits at 500 K. The isentropic efficiency of the compressor is 70%. Whatis the exit pressure? How much power is required to drive the compressor? Assumespecific heats at room temperatures.arrow_forwardA steam turbine has an inlet of 2 kg/s water at 1000 kPa, 350°C and velocity of 15 m/s. The exit is at 100 kPa, x = 1 and very low velocity. Find the specific work and the power produced.arrow_forwardA flow of 3 kg/s of superheated steam at 300 kPa and 300°C is mixed with liquid water at 300 kPa and 90°C so that the output is a flow of saturated steam at 300 kPa. Assume the mixing chamber is insulated, find the flow rate of liquid water needed for the process.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY