
Concept explainers
(i)
The rank of following gravitational acceleration for the following Falling object.
(i)

Answer to Problem 7.13OQ
The rank of the following gravitational acceleration for the falling object
Explanation of Solution
Given info: A
Write the expression for the gravitational acceleration at the height
Here,
The radius of the earth is much greater than the height from the point where the object is falling so that the change in the gravitation acceleration is negligible. The value of the gravitational acceleration for all object are equal to
The rank of the following gravitational acceleration for the falling object
Here,
Conclusion:
Therefore, the rank of following gravitational acceleration for the falling object
(ii)
The rank of following gravitational forces for the following Falling object.
(ii)

Answer to Problem 7.13OQ
The rank of the following gravitational forces for the falling object is
Explanation of Solution
Given info: A
Write the expression for the gravitational force.
Here,
For object of mass
Substitute
Thus, the force on the
For object of mass
Substitute
Thus, the force on the
For object of mass
Substitute
Thus, the force on the
For object of mass
Substitute
Thus, the force on the
From the value of the forces the ranking of the following gravitational forces for the falling object.
Conclusion:
Therefore, the rank of the following gravitational forces for the falling object is
(iii)
The rank of following gravitational potential energy for the following Falling object.
(iii)

Answer to Problem 7.13OQ
The rank of the following gravitational potential energy for the falling object is
Explanation of Solution
Given info: A
Write the expression for the gravitational potential energy for the falling of object.
Here,
For object of mass
Substitute
Thus, the potential energy for the
For object of mass
Substitute
Thus, the potential energy for the
For object of mass
Substitute
Thus, the potential energy for the
For object of mass
Substitute
Thus, the potential energy for the
From the value of the energies the ranking of the following gravitational potential energies for the falling object.
Conclusion:
Therefore, the rank of the following gravitational potential energy for the falling object is
Want to see more full solutions like this?
Chapter 7 Solutions
Physics for Scientists and Engineers
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





