Connect for Chemistry
13th Edition
ISBN: 9781260161854
Author: Raymond Chang, Jason Overby
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 7.128QP
Interpretation Introduction
Interpretation:
The uncertainty in speed of oxygen has to be calculated using position and mass of the oxygen molecule.
Concept introduction:
Heisenberg uncertainty principle:
It is not possible to identify both the particle’s momentum and position at same time with certainty. It is given as mathematical equation
Where,
h is Planck’s constant.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Imagine an alternate universe where the value of the Planck constant is
6.62607 × 10-12
J.s.
In that universe, which of the following objects would require quantum
mechanics to describe, that is, would show both particle and wave properties?
Which objects would act like everyday objects, and be adequately described by
classical mechanics?
object
A bacterium with a mass of 4.0 pg, 1.0 μm long, moving
at 9.00 μm/s.
A raindrop with a mass of 4.0 mg, 5.4 mm wide, moving
at 8.0 m/s.
A ball with a mass of 50. g, 4.0 cm wide, moving at 21.2
m/s.
An alpha particle with a mass of 6.6 x 10-27 kg, 8.0 x
10-15 m wide, moving at 12. km/s.
quantum or classical?
classical
O quantum
O classical
quantum
O classical
O quantum
classical
quantum
particle is confined to a one-dimensional box of length L. Deduce the location of the posit ions with in the box at which the particle is most likely to be found when the quantum number of the particle is (a) n = 1. (b) n = 2. and(c) n = 3.
Consider a 2070 lb automobile clocked by law-enforcement radar at a speed of 85.5 mph (miles per hour). If the position of the
car is known to within 5.0 ft at the time of the measurement, what is the uncertainty in the velocity of the car?
Δυ Σ
Incorrect
mph
Chapter 7 Solutions
Connect for Chemistry
Ch. 7.1 - What is the wavelength (in meters) of an...Ch. 7.1 - Which of the waves (a)(c) has (i) the highest...Ch. 7.1 - Why is radiation only in the UV but not the...Ch. 7.2 - The energy of a photon is 5.87 1020 J. What is...Ch. 7.2 - The work function of titanium metal is 6.93 1019...Ch. 7.2 - A photon has a frequency of 7.25 1014 s1....Ch. 7.2 - What is the wavelength (in nm) of a photon with...Ch. 7.2 - A clean metal surface is irradiated with light of...Ch. 7.3 - What is the wavelength (in nanometers) of a photon...Ch. 7.3 - Which transition in the hydrogen atom would emit...
Ch. 7.3 - What is the energy of an electron in the n = 4...Ch. 7.3 - What is the wavelength (in nm) of a photon emitted...Ch. 7.4 - Calculate the wavelength (in nanometers) of a H...Ch. 7.4 - Which quantity in Equation (7.8) is responsible...Ch. 7.4 - What is the wavelength (in nm) of a neutron...Ch. 7.5 - Estimate the uncertainty in the speed of an oxygen...Ch. 7.5 - What is the difference between and 2 for the...Ch. 7.5 - A proton is moving at a speed of 6.0 106 m/s. If...Ch. 7.6 - What are the allowed values for m when n = 5 and ...Ch. 7.6 - What are the allowed values of when n = 3?Ch. 7.6 - Give the four quantum numbers for each of the two...Ch. 7.7 - Give the values of the quantum numbers associated...Ch. 7.7 - What is the total number of orbitals associated...Ch. 7.7 - Why is it not possible to have a 2d orbital, but a...Ch. 7.7 - What are the n, , and m values for orbitals in the...Ch. 7.7 - How many orbitals are there in the 5f subshell?Ch. 7.8 - Write the four quantum numbers for an electron in...Ch. 7.8 - Prob. 11PECh. 7.8 - Write a complete set of quantum numbers for each...Ch. 7.8 - The ground-state electron configuration of an atom...Ch. 7.8 - Determine the maximum number of electrons that can...Ch. 7.8 - Identify the error in each of the following sets...Ch. 7.9 - Prob. 13PECh. 7.9 - What element is represented by the following...Ch. 7.9 - Identify the element that has the following...Ch. 7.9 - Write the electron configuration for an atom of...Ch. 7 - What is a wave? Explain the following terms...Ch. 7 - What are the units for wavelength and frequency of...Ch. 7 - List the types of electromagnetic radiation,...Ch. 7 - Give the high and low wavelength values that...Ch. 7 - Briefly explain Plancks quantum theory and explain...Ch. 7 - Prob. 7.6QPCh. 7 - (a) What is the wavelength (in nm) of light having...Ch. 7 - (a) What is the frequency of light having a...Ch. 7 - Prob. 7.9QPCh. 7 - How many minutes would it take a radio wave to...Ch. 7 - The SI unit of time is the second, which is...Ch. 7 - Prob. 7.12QPCh. 7 - What are photons? What role did Einsteins...Ch. 7 - Consider the plots shown here for the...Ch. 7 - A photon has a wavelength of 624 nm. Calculate the...Ch. 7 - The blue color of the sky results from the...Ch. 7 - A photon has a frequency of 6.0 104 Hz. (a)...Ch. 7 - What is the wavelength, in nm, of radiation that...Ch. 7 - When copper is bombarded with high-energy...Ch. 7 - A particular form of electromagnetic radiation has...Ch. 7 - The work function of potassium is 3.68 1019 J....Ch. 7 - When light of frequency equal to 2.11 1015 s1...Ch. 7 - (a) What is an energy level? Explain the...Ch. 7 - Prob. 7.24QPCh. 7 - Explain why elements produce their own...Ch. 7 - Prob. 7.26QPCh. 7 - Prob. 7.27QPCh. 7 - Explain how astronomers are able to tell which...Ch. 7 - Consider the following energy levels of a...Ch. 7 - Prob. 7.30QPCh. 7 - Calculate the wavelength (in nm) of a photon...Ch. 7 - Calculate the frequency (Hz) and wavelength (nm)...Ch. 7 - Prob. 7.33QPCh. 7 - An electron in the hydrogen atom makes a...Ch. 7 - Explain the statement, Matter and radiation have a...Ch. 7 - How does de Broglies hypothesis account for the...Ch. 7 - Why is Equation (7.8) meaningful only for...Ch. 7 - (a) If a H atom and a He atom are traveling at the...Ch. 7 - Prob. 7.39QPCh. 7 - Protons can be accelerated to speeds near that of...Ch. 7 - What is the de Broglie wavelength, in centimeters,...Ch. 7 - What is the de Broglie wavelength (in nm)...Ch. 7 - What are the inadequacies of Bohrs theory?Ch. 7 - What is the Heisenberg uncertainty principle? What...Ch. 7 - Prob. 7.45QPCh. 7 - How is the concept of electron density used to...Ch. 7 - Prob. 7.47QPCh. 7 - Which quantum number defines a shell? Which...Ch. 7 - Which of the following orbitals do not exist: 1p,...Ch. 7 - Which of the four quantum numbers (n, , m, ms)...Ch. 7 - Prob. 7.51QPCh. 7 - An electron in an atom is in the n = 3 quantum...Ch. 7 - Give the values of the quantum numbers associated...Ch. 7 - Give the values of the four quantum numbers of an...Ch. 7 - Prob. 7.55QPCh. 7 - List all the possible subshells and orbitals...Ch. 7 - What is an atomic orbital? How does an atomic...Ch. 7 - Describe the shapes of s, p, and d orbitals. How...Ch. 7 - List the hydrogen orbitals in increasing order of...Ch. 7 - Why is a boundary surface diagram useful in...Ch. 7 - Prob. 7.61QPCh. 7 - What is the difference between a 2px and a 2py...Ch. 7 - Calculate the total number of electrons that can...Ch. 7 - Prob. 7.64QPCh. 7 - Prob. 7.65QPCh. 7 - Indicate the total number of (a) p electrons in N...Ch. 7 - Make a chart of all allowable orbitals in the...Ch. 7 - Why do the 3s, 3p, and 3d orbitals have the same...Ch. 7 - For each of the following pairs of hydrogen...Ch. 7 - Which orbital in each of the following pairs is...Ch. 7 - What is electron configuration? Describe the roles...Ch. 7 - Prob. 7.72QPCh. 7 - Prob. 7.73QPCh. 7 - What is meant by the term shielding of electrons...Ch. 7 - Indicate which of the following sets of quantum...Ch. 7 - The ground-state electron configurations listed...Ch. 7 - The atomic number of an element is 73. Is this...Ch. 7 - Indicate the number of unpaired electrons present...Ch. 7 - State the Aufbau principle and explain the role it...Ch. 7 - Prob. 7.80QPCh. 7 - What is the noble gas core? How does it simplify...Ch. 7 - What are the group and period of the element...Ch. 7 - Prob. 7.83QPCh. 7 - Explain why the ground-state electron...Ch. 7 - Prob. 7.85QPCh. 7 - Comment on the correctness of the following...Ch. 7 - Prob. 7.87QPCh. 7 - Use the Aufbau principle to obtain the...Ch. 7 - Prob. 7.89QPCh. 7 - Prob. 7.90QPCh. 7 - The electron configuration of a neutral atom is...Ch. 7 - Which of the following species has the most...Ch. 7 - A sample tube consisted of atomic hydrogens in...Ch. 7 - A laser produces a beam of light with a wavelength...Ch. 7 - When a compound containing cesium ion is heated in...Ch. 7 - Prob. 7.96QPCh. 7 - Prob. 7.97QPCh. 7 - Prob. 7.98QPCh. 7 - Identify the following individuals and their...Ch. 7 - What properties of electrons are used in the...Ch. 7 - A certain pitchers fastballs have been clocked at...Ch. 7 - A student carried out a photoelectric experiment...Ch. 7 - (a) What is the lowest possible value of the...Ch. 7 - Considering only the ground-state electron...Ch. 7 - A ruby laser produces radiation of wavelength 633...Ch. 7 - A 368-g sample of water absorbs infrared radiation...Ch. 7 - Photodissociation of water H2O(l)+hvH2(g)+12O2(g)...Ch. 7 - Prob. 7.109QPCh. 7 - An atom moving at its root-mean-square speed at...Ch. 7 - Prob. 7.111QPCh. 7 - The He+ ion contains only one electron and is...Ch. 7 - Ozone (O3) in the stratosphere absorbs the harmful...Ch. 7 - The retina of a human eye can detect light when...Ch. 7 - A helium atom and a xenon atom have the same...Ch. 7 - Prob. 7.116QPCh. 7 - Prob. 7.117QPCh. 7 - A photoelectric experiment was performed by...Ch. 7 - Draw the shapes (boundary surfaces) of the...Ch. 7 - The electron configurations described in this...Ch. 7 - Draw orbital diagrams for atoms with the following...Ch. 7 - Prob. 7.122QPCh. 7 - Scientists have found interstellar hydrogen atoms...Ch. 7 - Prob. 7.124QPCh. 7 - Ionization energy is the minimum energy required...Ch. 7 - An electron in a hydrogen atom is excited from the...Ch. 7 - Prob. 7.127QPCh. 7 - Prob. 7.128QPCh. 7 - Prob. 7.129QPCh. 7 - Shown are portions of orbital diagrams...Ch. 7 - The UV light that is responsible for tanning the...Ch. 7 - The sun is surrounded by a white circle of gaseous...Ch. 7 - Prob. 7.133QPCh. 7 - Prob. 7.134QPCh. 7 - Prob. 7.135QPCh. 7 - In an electron microscope, electrons are...Ch. 7 - Prob. 7.137QPCh. 7 - The radioactive Co-60 isotope is used in nuclear...Ch. 7 - (a) An electron in the ground state of the...Ch. 7 - One wavelength in the hydrogen emission spectrum...Ch. 7 - Owls have good night vision because their eyes can...Ch. 7 - For hydrogenlike ions, that is, ions containing...Ch. 7 - When two atoms collide, some of their kinetic...Ch. 7 - Calculate the energies needed to remove an...Ch. 7 - The de Broglie wavelength of an accelerating...Ch. 7 - The minimum uncertainty in the position of a...Ch. 7 - According to Einsteins special theory of...Ch. 7 - The mathematical equation for studying the...Ch. 7 - In the beginning of the twentieth century, some...Ch. 7 - Blackbody radiation is the term used to describe...Ch. 7 - Prob. 7.151QPCh. 7 - The wave function for the 2s orbital in the...Ch. 7 - A student placed a large unwrapped chocolate bar...Ch. 7 - The wave properties of matter can generally be...Ch. 7 - Atoms of an element have only two accessible...Ch. 7 - Prob. 7.156QPCh. 7 - Only a fraction of the electrical energy supplied...Ch. 7 - Prob. 7.158QPCh. 7 - A typical red laser pointer has a power of 5 mW....Ch. 7 - Referring to the Chemistry in Action essay Quantum...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Calculate the momentum of an X-ray photon with a wavelength of 0.17nm. How does this value compare with the momentum of a free electron that has been accelerated through a potential difference of 5000 volts? (Hint: electron mass, m, = 9.10938 x 10" kg; electron charge e = 1.602 x 10"C; speed of light e = 3.0 x 10° m.s'; 1.00 J= 1.00 VC; h = 6.626 x 10"J.s. The various energy units are: 1 J=1 kg.m's", 1.00 cV =1VC, leV = 1.602 x 10"J, 1J=6.242 x 10" eV, etc.). %3D %3Darrow_forwardUsing Planck's constant as h = 6.63 × 10−34 J⋅s, what is the wavelength of a proton with a speed of 5.00 × 106 m/s? The mass of a proton is 1.66 × 10−27 kg. Remember to identify your data, show your work, and report the answer using the correct number of significant digits and units.arrow_forwardCalculate the momentum of an X-ray photon with a wavelength of 0.17nm. How does this value compare with the momentum of a free electron that has been accelerated through a potential difference of 5000 volts? (Hint: electron mass, m, = 9.10938 x 10" kg; electron charge e = 1.602 x 10"C; speed of light e = 3.0 x 10* m.s'; 1.00 J= 1.00 VC; h = 6.626 x 10"J.s. The various energy units are: 1 J= 1 kg.m°s³, 1.00 eV =1VC, leV= 1.602 x 10"J, 1J= 6.242 x 10" eV, etc.). %3Darrow_forward
- Imagine an alternate universe where the value of the Planck constant is 6.62607 × 10 -16 J•s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? object quantum or classical? A virus with a mass of 6.0 x 1017 g, 380. nm wide, O classical moving at 1.70 um/s. quantum A turtle with a mass of 990. g, 24. cm long, moving at 1.5 classical cm/s. quantum O classical An atom with a mass of 1.0 x 1027 kg, 77. pm wide, moving at 115. m/s. quantum O classical A grain of sand with a mass of 140 mg, 900. pm wide, moving at 2.00 mm/s. O quantum Explanation Check O 2021 McGraw-Hill Education. All Rights Reserved. Terms of UseI Privacy Accessibility MacBook Pro Q esc @ #3 $ &arrow_forwardImagine an alternate universe where the value of the Planck constant is 6.62607 × 108 J.S. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? object A buckyball with a mass of 1.2 x 10-21 g, 0.7 nm wide, moving at 27. m/s. A mosquito with a mass of 2.1 mg, 11.5 mm long, moving at 1.8 m/s. An eyelash mite with a mass of 14.2 µg, 340 μm wide, moving at 44. μm/s. An airplane with a mass of 1.29 x 104 kg, 13.0 m long, moving at 500. km/h. quantum or classical? classical quantum O classical quantum classical quantum classical quantumarrow_forwardWhat is the minimum uncertainty in a helium atom's velocity (Δ?min)(Δvmin) if the position is known within 1.1 Å.arrow_forward
- Imagine an alternate universe where the value of the Planck constant is 6.62607 x 10 - 39 J•s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? object quantum or classical? O classical A raindrop with a mass of 22.0 mg, 6.4 mm wide, moving at 8.5 m/s. O quantum O classical An iceberg with a mass of 2.5 x 108 kg, 120. wide, moving at 0.73 km/h. O quantum O classical An atom with a mass of 1.0 x 10-27 kg, 185. pm wide, moving at 357. m/s. O quantum O classical A bacterium with a mass of 4.0 pg, 8.0 um long, moving at 2.00 µm/s. O quantumarrow_forwardImagine an alternate universe where the value of the Planck constant is 6.62607 × 10 J.s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? object A human with a mass of 57. kg, 1.3 m high, moving at 1.6 m/s. A virus with a mass of 6.4 x 10-17 g, 370. nm wide, moving at 1.50 μm/s. A raindrop with a mass of 13.0 mg, 2.5 mm wide, moving at 6.5 m/s. A turtle with a mass of 350. g, 24. cm long, moving at 2.7 cm/s. quantum or classical? X classical quantum classical quantum classical quantum classical quantum 3arrow_forwardThe speed of a certain proton is 0.45 Mm s−1. If the uncertainty in its momentum is to be reduced to 0.0100 per cent, what uncertainty in its location must be tolerated?arrow_forward
- Imagine an alternate universe where the value of the Planck constant is 6.62607x10° J-s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? object quantum or classical? O classical A bacterium with a mass of 4.0 pg, 8.0 pm long, moving at 2.00 um/s. quantum classical An atom with a mass of 1.0 x 104 kg, 81. pm wide, moving at 186. m/s. quantum classical A ball with a mass of 120. g, 4.8 cm wide, moving at 25.4 m/s. quantum classical A car with a mass of 1400. kg, 4.6 m long, moving at 98.0 km/h. quantumarrow_forwardSuppose that you have a solution containing a substance whose molecules have two quantum states corresponding to different orientations of a certain subgroup of atoms. The energy difference between these two molecular states is ΔE = 0.130 eV. You are running an experiment where no more than 5% percent of the molecules can be in the higher-energy state, or it will cause unacceptable noise. Can you run the experiment at room temperature, or do you need to cool your solution? Decide by determining the percentage of molecules in the higher-energy state. The percentage of molecules in the higher-energy state is_____ %.arrow_forwardImagine an alternate universe where the value of the Planck constant is 6.62607 × 10-37 J.s. In that universe, which of the following objects would require quantum mechanics to describe, that is, would show both particle and wave properties? Which objects would act like everyday objects, and be adequately described by classical mechanics? object An atom with a mass of 1.0 x 10-25 kg, 85. pm wide, moving at 174. m/s. A grain of sand with mass of 50 mg, 500. um wide, moving at 9.00 mm/s. An iceberg with a mass of 2.7 x 108 kg, 110. m wide, moving at 1.00 km/h. A virus with a mass of 2.8 x 10-17 g, 190. nm wide, moving at 1.00 μm/s. quantum or classical? 100 0 0 ㅇ ㅇㅇㅇ classical O quantum O classical O quantum O classical O quantum O classical O quantum X Sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Quantum Mechanics - Part 1: Crash Course Physics #43; Author: CrashCourse;https://www.youtube.com/watch?v=7kb1VT0J3DE;License: Standard YouTube License, CC-BY