![EBK CHEMISTRY](https://www.bartleby.com/isbn_cover_images/8220102797857/8220102797857_largeCoverImage.jpg)
The electron configurations described in this chapter all refer to gaseous atoms in their ground states. An atom may absorb a quantum of energy and promote one of its electrons to a higher-energy orbital. When this happens, we say that the atom is in an excited state. The electron configurations of some excited atoms are given. Identify these atoms and write their ground-state configurations:
- (a) 1s12s1
- (b) 1s22s22p23d1
- (c) 1s22s22p64s1
- (d) [Ar]4s13d104p4
- (e) [Ne]3s23p43d1
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The symbols of the given atoms in which the electron configurations of excited states are given and their corresponding ground-state configurations should be described using the concept of electron configurations.
Concept Introduction:
The ground state is the lowest possible energy state for an atom. An excited state is any energy level higher than the ground state. There is only one ground state energy for an atom, but there can be many possible excited states for an atom. The ground state is called when all of the electrons of an atom are in their lowest possible energy levels/subshells. For
The electron configuration is the distribution of electrons of an atom or a molecule in various atomic orbitals.
To find: Get the symbols of the given atoms in which the electron configurations of excited states are given and their corresponding ground-state configurations
Answer to Problem 7.120QP
Helium (
Explanation of Solution
The electron configurations generally refer to gaseous atoms in their ground states. An atom may absorb a quantum of energy and promote one of its electrons to a higher energy orbital. When this happens, at that time the atom is in an excited state. The given excited atoms are neutral. Hence, the total number of electrons is the same as the atomic number of the element.
Two electrons are involved. Hence, its ground-state configuration is
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
The symbols of the given atoms in which the electron configurations of excited states are given and their corresponding ground-state configurations should be described using the concept of electron configurations.
Concept Introduction:
The ground state is the lowest possible energy state for an atom. An excited state is any energy level higher than the ground state. There is only one ground state energy for an atom, but there can be many possible excited states for an atom. The ground state is called when all of the electrons of an atom are in their lowest possible energy levels/subshells. For
The electron configuration is the distribution of electrons of an atom or a molecule in various atomic orbitals.
To find: Get the symbols of the given atoms in which the electron configurations of excited states are given and their corresponding ground-state configurations
Answer to Problem 7.120QP
Carbon (
Explanation of Solution
Six electrons are involved. Hence, its ground-state configuration is
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
The symbols of the given atoms in which the electron configurations of excited states are given and their corresponding ground-state configurations should be described using the concept of electron configurations.
Concept Introduction:
The ground state is the lowest possible energy state for an atom. An excited state is any energy level higher than the ground state. There is only one ground state energy for an atom, but there can be many possible excited states for an atom. The ground state is called when all of the electrons of an atom are in their lowest possible energy levels/subshells. For
The electron configuration is the distribution of electrons of an atom or a molecule in various atomic orbitals.
To find: Get the symbols of the given atoms in which the electron configurations of excited states are given and their corresponding ground-state configurations
Answer to Problem 7.120QP
Sodium (
Explanation of Solution
11 electrons are involved. Hence, its ground-state configuration is
(d)
![Check Mark](/static/check-mark.png)
Interpretation:
The symbols of the given atoms in which the electron configurations of excited states are given and their corresponding ground-state configurations should be described using the concept of electron configurations.
Concept Introduction:
The ground state is the lowest possible energy state for an atom. An excited state is any energy level higher than the ground state. There is only one ground state energy for an atom, but there can be many possible excited states for an atom. The ground state is called when all of the electrons of an atom are in their lowest possible energy levels/subshells. For
The electron configuration is the distribution of electrons of an atom or a molecule in various atomic orbitals.
To find: Get the symbols of the given atoms in which the electron configurations of excited states are given and their corresponding ground-state configurations
Answer to Problem 7.120QP
Arsenic (
Explanation of Solution
33 electrons are involved. Hence, its ground-state configuration is
(e)
![Check Mark](/static/check-mark.png)
Interpretation:
The symbols of the given atoms in which the electron configurations of excited states are given and their corresponding ground-state configurations should be described using the concept of electron configurations.
Concept Introduction:
The ground state is the lowest possible energy state for an atom. An excited state is any energy level higher than the ground state. There is only one ground state energy for an atom, but there can be many possible excited states for an atom. The ground state is called when all of the electrons of an atom are in their lowest possible energy levels/subshells. For
The electron configuration is the distribution of electrons of an atom or a molecule in various atomic orbitals.
To find: Get the symbols of the given atoms in which the electron configurations of excited states are given and their corresponding ground-state configurations
Answer to Problem 7.120QP
Chlorine (
Explanation of Solution
17 electrons are involved. Hence, its ground-state configuration is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK CHEMISTRY
Additional Science Textbook Solutions
Chemistry: Structure and Properties (2nd Edition)
Laboratory Manual For Human Anatomy & Physiology
Biology: Concepts and Investigations
General, Organic, and Biological Chemistry - 4th edition
Organic Chemistry (8th Edition)
- A Standard Reference Material is certified to contain 94.6 ppm of an organic contaminant in soil. Your analysis gives values of 98.6, 98.4, 97.2, 94.6, and 96.2. Do your results differ from the expected results at the 95% confidence interval?arrow_forwardThe percentage of an additive in gasoline was measured six times with the following results: 0.13, 0.12, 0.16, 0.17, 0.20, and 0.11%. Find the 95% confidence interval for the percentage of additive.arrow_forwardExplain why this data led Rayleigh to look for and to discover Ar.arrow_forward
- 5) Confidence interval. Berglund and Wichardt investigated the quantitative determination of Cr in high-alloy steels using a potentiometric titration of Cr(VI). Before the titration, samples of the steel were dissolved in acid and the chromium oxidized to Cr(VI) using peroxydisulfate. Shown here are the results (as %w/w Cr) for the analysis of a reference steel. 16.968, 16.922, 16.840, 16.883, 16.887, 16.977, 16.857, 16.728 Calculate the mean, the standard deviation, and the 95% confidence interval about the mean. What does this confidence interval mean?arrow_forwardIn the Nitrous Acid Test for Amines, what is the observable result for primary amines? Group of answer choices nitrogen gas bubbles form a soluble nitrite salt yellow oily layer of nitrosoaminearrow_forward3. a. Use the MS to propose at least two possible molecular formulas. For an unknown compound: 101. 27.0 29.0 41.0 50.0 52.0 55.0 57.0 100 57.5 58.0 58.5 62.0 63.0 64.0 65.0 74.0 40 75.0 76.0 20 20 40 60 80 100 120 140 160 180 200 220 m/z 99.5 68564810898409581251883040 115.0 116.0 77404799 17417M 117.0 12.9 118.0 33.5 119.0 36 133 0 1.2 157.0 2.1 159.0 16 169.0 219 170.0 17 171.0 21.6 172.0 17 181.0 1.3 183.0 197.0 100.0 198.0 200. 784 Relative Intensity 2 2 8 ō (ppm) 6 2arrow_forward
- Solve the structure and assign each of the following spectra (IR and C-NMR)arrow_forward1. For an unknown compound with a molecular formula of C8H100: a. What is the DU? (show your work) b. Solve the structure and assign each of the following spectra. 8 6 2 ō (ppm) 4 2 0 200 150 100 50 ō (ppm) LOD D 4000 3000 2000 1500 1000 500 HAVENUMBERI -11arrow_forward16. The proton NMR spectral information shown in this problem is for a compound with formula CioH,N. Expansions are shown for the region from 8.7 to 7.0 ppm. The normal carbon-13 spec- tral results, including DEPT-135 and DEPT-90 results, are tabulated: 7 J Normal Carbon DEPT-135 DEPT-90 19 ppm Positive No peak 122 Positive Positive cus и 124 Positive Positive 126 Positive Positive 128 No peak No peak 4° 129 Positive Positive 130 Positive Positive (144 No peak No peak 148 No peak No peak 150 Positive Positive してしarrow_forward
- 3. Propose a synthesis for the following transformation. Do not draw an arrow-pushing mechanism below, but make sure to draw the product of each proposed step (3 points). + En CN CNarrow_forwardShow work..don't give Ai generated solution...arrow_forwardLabel the spectrum with spectroscopyarrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)