FUNDAMENTALS OF THERMODYNAMICS
10th Edition
ISBN: 9781119634928
Author: Borgnakke
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
You have a nozzle with steam inlet at 350 deg C, 0.85 MPa and 12m/s. The stream exits at 0.4 MPa and 250 m/s. If stream 1 area is 750cm2, what is exit stream area and temperature?
Solve it correctly please. I will rate. Answer should be match
A steam is expanded through a nozzle and the enthalphy drop per kg of steam from the initial pressure to the final pressure is 70 kJ. Neglecting the friction, find the velocity of discharge.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Steam flows isentropically through a nozzle from 1517Kpa, 288degC and 965kPa. Mass is 454g/s Find: 9. Final Temperature 10. Work (identify if steady or non-flow work)arrow_forwardEx1/ air has pressure 100 kN/m and temperature 20°C this air is compressed by adiabatic process at rate 10 kg/s if he pressure ratio is ). If the isentropic efficiency is 0.85 calculate the final temperature and pressure and power consumed by compressor. Sol/arrow_forwardoccuring when a process with air, the entropy goes up by 0.60 kJ/kg·K. 11 is the pressure compression ratio. 300K is the initial temperature. What is the final temperature if it is a constant specific heat and if it is a variable specific heat? When Rair = 0.287 and cp = 1.005 kJ/kg·K.arrow_forward
- There are required 2000 kW of compressor power to handle air adiabaticallyfrom 1 atmosphere, 27 oC, to 305 kPaa. The initial air velocity is 20 m/s and the finalvelocity is 85 m/s. a) If the compression is isentropic, find the compressor capacity, inm3/s. b) If the compression process is irreversible adiabatic to a temperature of 160 oC,with the capacity found in c), determine the compressor power input, in Hp.arrow_forwardAir enters an insulated compressor at ambient conditions, 100 kPa, 20oC at the rate of0.2 kg/s and exits at 500 K. The isentropic efficiency of the compressor is 70%. Whatis the exit pressure? How much power is required to drive the compressor? Assumespecific heats at room temperatures.arrow_forwardThe power of a steam turbine in a thermal power plant is 60 MW. Water vapor enters the turbine at 3MPa pressure, 4000C temperature and 50 m / s speed, 10 kPa pressure, 0.9 dry degree and 200 m / s speed leaves the turbine. Considering the turbine as adiabatic; 1-Find the mass flow of steam 2-Find the turbine outlet cross-sectional area, its ratio (A2 / A1) to the inlet cross-sectional area.arrow_forward
- i need the answer quicklyarrow_forwardA turbine operating in a continuous flow works adiabatically. The water vapor enters the turbine at a temperature of 650 C and comes out with 20 kPa pressure and 85% dryness. Find the mass flow rate (kg / sec) required to generate 10 MW of power from the system (ignore KE and PE changes)arrow_forwardQs: 1 leg of air is allowed to expand reversibly in a behind a piston in such constant at 2602 lwhile the volume is doubled. The piston iis then moved in, and heat is regected by cylinder that the temp erature vemains away the air reversidly until the volume is the same asit was at constant 0 ini tially. Calculate the net heat flow and the overall change of entropy Sketel the process on T.s diagram. pressure Ans. [-161.9 J -- 0.497 les kg.karrow_forward
- An adiabatic turbine with a continuous flow of water vapor has a pressure of 10 MPa andIt enters at a temperature of 500 ° C, 10 kPa pressure and 90 percent drynessIt comes out with the degree. Kinetic and potential energy changesthe mass required for the turbine to produce 5 MW of powerCalculate the flow rate.arrow_forwardH.w: nitrogen gas flows into a convergent nozzle at 200 kpa,400 K and very low velocity .it flows out of the nozzle at 100 kpa.330 K.ifthe nozzle is insulated find the exit velocity .C, for nitrogen -1.042arrow_forwardcan you write all steps ,and what you use (chart) be hurry pleasearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Plant Explained | Working Principles; Author: RealPars;https://www.youtube.com/watch?v=HGVDu1z5YQ8;License: Standard YouTube License, CC-BY