COLLEGE PHY2053 W/MODIFIED ACCESS>BI<
16th Edition
ISBN: 9781323515303
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 70GP
a.
To determine
The torque of a motor when a disk is inserted.
b.
To determine
The angular speed changes when the disk plays.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
SARET CRKS AUTOWAY
12. A stone is dropped from the top of a cliff. It is seen to hit the ground below
after 3.55 s. How high is the cliff?
13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming
no air resistance, what is the speed of the ball just before it strikes the ground?
14. Estimate (a) how long it took King Kong to fall straight down from the top
of the Empire State Building (280m high), and (b) his velocity just before
"landing".
Useful equations
For Constant Velocity:
V =>
D
X = V₁t + Xo
For Constant Acceleration:
Vr = V + at
X = Xo+Vot +
v=V+2a(X-Xo)
\prom = V +V
V velocity
t = time
D Distance
X = Final Position
Xo Initial Position
V = Final Velocity
Vo Initial Velocity
a = acceleration
For free fall
Yf
= Final Position
Yo Initial Position
g = 9.80
m
$2
For free fall:
V = V + gt
Y=Yo+Vo t +
+gt
V,² = V₁²+2g (Y-Yo)
V+Vo
Vprom=
2
6
Solve the problems
A 11 kg weight is attached to a spring with constant k = 99 N/m and subjected to an external force
F(t) =-704 sin(5t). The weight is initially displaced 4 meters above equilibrium and given an
upward velocity of 5 m/s. Find its displacement for t> 0.
y(t)
ון
Chapter 7 Solutions
COLLEGE PHY2053 W/MODIFIED ACCESS>BI<
Ch. 7 - The batter in a baseball game hits a home run. As...Ch. 7 - Viewed from somewhere in space above the north...Ch. 7 - Figure Q7.3 shows four pulleys, each with a heavy...Ch. 7 - If you are using a wrench to loosen a very...Ch. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - Prob. 7CQCh. 7 - A screwdriver with a very thick handle requires...Ch. 7 - If you have ever driven a truck, you likely found...Ch. 7 - A student gives a steady push to a ball at the end...
Ch. 7 - Prob. 11CQCh. 7 - If you grasp a hammer by its lightweight handle...Ch. 7 - Prob. 13CQCh. 7 - Prob. 15CQCh. 7 - The moment of inertia of a uniform rod about an...Ch. 7 - Prob. 17CQCh. 7 - With care, its possible to walk on top of a barrel...Ch. 7 - A nut needs to be tightened with a wrench. Which...Ch. 7 - Prob. 20MCQCh. 7 - Prob. 21MCQCh. 7 - Prob. 22MCQCh. 7 - Prob. 23MCQCh. 7 - A typical compact disk has a mass of 15 g and a...Ch. 7 - Two horizontal rods are each held up by vertical...Ch. 7 - Prob. 26MCQCh. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - Questions 25 through 27 concern a classic...Ch. 7 - What is the angular position in radians of the...Ch. 7 - A child on a merry-go-round takes 3.0 s to go...Ch. 7 - What is the angular speed of the tip of the minute...Ch. 7 - An old-fashioned vinyl record rotates on a...Ch. 7 - The earths radius is about 4000 miles. Kampala,...Ch. 7 - Prob. 6PCh. 7 - A turntable rotates counterclockwise at 78 rpm. A...Ch. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - The 1.00-cm-long second hand on a watch rotates...Ch. 7 - The earths radius is 6.37 106 m; it rotates once...Ch. 7 - To throw a discus, the thrower holds it with a...Ch. 7 - Prob. 14PCh. 7 - A computer hard disk starts from rest, then speeds...Ch. 7 - Prob. 16PCh. 7 - The crankshaft in a race car goes from rest to...Ch. 7 - Reconsider the situation in Example 7.10. If Luis...Ch. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - What is the net torque about the axle on the...Ch. 7 - The tune-up specifications of a car call for the...Ch. 7 - In Figure P7.22, force F2, acts half as far from...Ch. 7 - A professors office door is 0.91 m wide, 2.0 m...Ch. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - What is the net torque on the bar shown in Figure...Ch. 7 - Prob. 30PCh. 7 - The 2.0 kg, uniform, horizontal rod in Figure...Ch. 7 - A 4.00-m-long, 500 kg steel beam extends...Ch. 7 - An athlete at the gym holds a 3.0 kg steel ball in...Ch. 7 - The 2.0-m-long, 15 kg beam in Figure P7.34 is...Ch. 7 - Prob. 35PCh. 7 - Hold your arm outstretched so that it is...Ch. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - A regulation table tennis ball is a thin spherical...Ch. 7 - Prob. 40PCh. 7 - A solid cylinder with a radius of 4.0 cm has the...Ch. 7 - Prob. 42PCh. 7 - A bicycle rim has a diameter of 0.65 m and a...Ch. 7 - Prob. 44PCh. 7 - A small grinding wheel has a moment of inertia of...Ch. 7 - Prob. 46PCh. 7 - An objects moment of inertia is 2.0 kg m2. Its...Ch. 7 - Prob. 48PCh. 7 - A 200 g, 20-cm-diameter plastic disk is spun on an...Ch. 7 - Prob. 50PCh. 7 - A frictionless pulley, which can be modeled as a...Ch. 7 - Prob. 52PCh. 7 - If you lift the front wheel of a poorly maintained...Ch. 7 - Prob. 54PCh. 7 - A toy top with a spool of diameter 5.0 cm has a...Ch. 7 - Prob. 56PCh. 7 - A bicycle with 0.80-m-diameter tires is coasting...Ch. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61GPCh. 7 - The grap in Figure P7.56 shows the angular...Ch. 7 - A car with 58-cm-diameter tires accelerates...Ch. 7 - The cable lifting an elevator is wrapped around a...Ch. 7 - The 20-cm-diameter disk in Figure P7.59 can rotate...Ch. 7 - A combination lock has a 1.0-cm-diameter knob that...Ch. 7 - A 70 kg mans arm, including the hand, can be...Ch. 7 - Prob. 68GPCh. 7 - A reasonable estimate of the moment of inertia of...Ch. 7 - Prob. 70GPCh. 7 - The ropes in Figure P7.65 are each wrapped around...Ch. 7 - Flywheels are large, massive wheels used to store...Ch. 7 - A 1.0 kg ball and a 2.0 kg ball are connected by a...Ch. 7 - Prob. 76GPCh. 7 - A tradesman sharpens a knife by pushing it with a...Ch. 7 - MCAT-Style Passage Problems The Bunchberry The...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - The Bunchberry The bunchberry flower has the...Ch. 7 - Prob. 81MSPPCh. 7 - Prob. 82MSPPCh. 7 - Prob. 83MSPPCh. 7 - Prob. 84MSPP
Knowledge Booster
Similar questions
- 7. A race car accelerates from rest to 55 m s-1 in 5.0 seconds. The acceleration of the car Is m s-² 8. An object's speed increases uniformly from 10.5 km per hour to 99.8 km per hour in 2.41 seconds. Calculate the acceleration in m s-2 and express your answer to three significant figures. 9. The acceleration-time graph of a car is shown below. The initial speed of the car is 5.0 m s-1. # Acceleration (ms) 12 8.0- 4.0- 2.0 4.0 6.0 Time (s) Calculate the velocity of the car at t = 4.0 s. 3arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- Problem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° horizon. above the 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Please view both photos, and answer the question correctly please. Thank you!!arrow_forwardA thrown brick hits a window, but doesn't break it. Instead it reverses direction and ends down on the ground below the window. Since the brick didn't break the glass, we know: О The force of the brick on the glass > the force of the glass on the brick. О The force of the brick on the glass the force of the glass on the brick. = О The force of the brick on the glass < the force of the glass on the brick. О The brick didn't slow down as it broke the glass.arrow_forwardAlexandra (wearing rubber boots for traction) is attempting to drag her 32.6-kg Golden Retriever across the smooth ice by applying a horizontal force. What force must she apply to move the dog with a constant speed of 0.950 m/s? ☐ 31.0 lb. ☐ 319 kg. ○ Zero. 32.6 kg.arrow_forward
- The figure shows a graph of the acceleration of an object as a function of the net force acting on it. The mass of this object, in grams, is closest to 11 a(m/s²) 8.0+ 6.0- 4.0- 2.0- 0+ F(N) 0.00 0.50 1.00 ☐ 130 ○ 8000 ☐ 89arrow_forwardValues that are within standard deviations represent measurements that are considered to be near the true value. Review the data from the lab and determine whether your data is within standard deviations. Report, using numerical values, whether your data for each angle is within standard deviations. An acceptable margin of error typically falls between 4% and 8% at the 95% confidence level. Review your data for each angle to determine whether the margin of error is within an acceptable range. Report with numerical values, whether your data for each angle is within an acceptable margin of error. Can you help explain what my data means in terms of the standard deviation and the ME? Thanks!arrow_forwardA sinusoidal wave is propagating along a stretched string that lies along the x-axis. The displacement of the string as a function of time is graphed in (Figure 1) for particles at x = 0 and at x = 0.0900 m. You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. If instead the wave is moving in the -x-direction, determine the wavelength. Please show all stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON