Concept explainers
(a)
Interpretation:
The percent dissociation of 0.50 M acetic acid should be calculated.
Concept Introduction :
The formula for the percent dissociation is represented as follows:
(a)

Answer to Problem 64E
0.60 %
Explanation of Solution
The ICE table for the equilibrium reaction is represented as follows:
The acid dissociation constant can be represented as follows:
The percent dissociation can be calculated as follows:
(b)
Interpretation:
The percent dissociation of 0.050 M acetic acid should be calculated.
Concept Introduction :
The formula for the percent dissociation is represented as follows:
(b)

Answer to Problem 64E
1.8 %
Explanation of Solution
The acid dissociation reaction can be represented as follows:
The expression for the acid dissociation reaction is as follows:
Thus,
(c)
Interpretation:
The percent dissociation of 0.0050 M acetic acid should be calculated.
Concept Introduction :
The percent dissociation is calculated as follows:
(c)

Answer to Problem 64E
6.0 %
Explanation of Solution
The equilibrium reaction is represented as follows:
(d)
Interpretation:
The reason for increase in the percent dissociation due to decrease in the concentration of a weak acid should be explained.
Concept Introduction:
The Le Chatelier’s principle states that if a change occurs in concentration, pressure or temperature in a system at equilibrium, the equilibrium will shift in such a way that it counteracts that change.
(d)

Answer to Problem 64E
Equilibrium shifts to right side when the concentration of weak acid decreases. Hence, the percent dissociation of a weak acid increases when the concentration of weak acid decreases.
Explanation of Solution
The dissociation reaction is represented as follows:
According to the Le Chatelier’s principle, when concentration of a species in an equilibrium reaction changes, the equilibrium will shift in such a way to counteract that change. So, when the concentration of the solution decreases, all the concentrations of the species in the system decrease. So, equilibrium shifts to the side with greater number of particles. That means above equilibrium shifts to right side when the concentration of weak acid decreases. Hence, the percent dissociation of a weak acid increases when the concentration of weak acid decreases.
(e)
Interpretation:
The reason for decrease in [H+] from a to c should be explained.
Concept Introduction :
The percent dissociation is represented as follows:
(e)

Explanation of Solution
The concentration of hydrogen ion or [H+] depends on the initial concentration of a weak acid and the dissociation constant. Here, initial concentration of the acetic acid decreases rapidly more than the increase in percent dissociation. So, H+ concentration decreases.
Want to see more full solutions like this?
Chapter 7 Solutions
WebAssign for Zumdahl's Chemical Principles, 8th Edition [Instant Access], Single-Term
- CUE COLUMN NOTES (A. Determine Stereoisomers it has ⑤ Identify any meso B compounds cl Br cl -c-c-c-c-¿- 1 CI C- | 2,4-Dichloro-3-bromopentanearrow_forwardThe acid-base chemistry of both EDTA and EBT are important to ensuring that the reactions proceed as desired, thus the pH is controlled using a buffer. What percent of the EBT indicator will be in the desired HIn2- state at pH = 10.5. pKa1 = 6.2 and pKa2 = 11.6 of EBTarrow_forwardWhat does the phrase 'fit for purpose' mean in relation to analytical chemistry? Please provide examples too.arrow_forward
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects Resonance Effects Overall Electron-Density × NO2 ○ donating O donating O withdrawing O withdrawing O electron-rich electron-deficient no inductive effects O no resonance effects O similar to benzene E [ CI O donating withdrawing O no inductive effects Explanation Check ○ donating withdrawing no resonance effects electron-rich electron-deficient O similar to benzene © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Accesarrow_forwardUnderstanding how substituents activate Rank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation HN NH2 Check X (Choose one) (Choose one) (Choose one) (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Aarrow_forwardIdentifying electron-donating and electron-withdrawing effects on benzene For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Inductive Effects Resonance Effects Overall Electron-Density Molecule CF3 O donating O donating O withdrawing O withdrawing O no inductive effects O no resonance effects electron-rich electron-deficient O similar to benzene CH3 O donating O withdrawing O no inductive effects O donating O withdrawing Ono resonance effects O electron-rich O electron-deficient O similar to benzene Explanation Check Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- * Hint: Think back to Chem 1 solubility rules. Follow Up Questions for Part B 12. What impact do the following disturbances to a system at equilibrium have on k, the rate constant for the forward reaction? Explain. (4 pts) a) Changing the concentration of a reactant or product. (2 pts) b) Changing the temperature of an exothermic reaction. (2 pts) ofarrow_forwardDraw TWO general chemical equation to prepare Symmetrical and non-Symmetrical ethers Draw 1 chemical reaction of an etherarrow_forwardPlease help me with the following questions for chemistry.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning




