
(a)
The work done by the applied force.
(a)

Explanation of Solution
Given:
The mass of sled is
The coefficient of friction between sled and road is
The distance traveled by sled is
The force applied to the sled is
Formula used:
Write the expression for work done by external force.
Here,
Calculation:
Substitute
Conclusion:
Thus, the work done by external force is
(b)
Theenergy dissipated by friction.
(b)

Explanation of Solution
Given:
The mass of sled is
The coefficient of friction between sled and road is
The distance traveled by sled is
The force applied to the sled is
Formula used:
Write the expression for friction force.
Here,
Write the expression for thermal energy.
Here,
Substitute
The free body diagram of sled is given below.
Write the expression for resultant force in vertical direction.
Here,
Substitute
Substitute
Calculation:
Substitute
Conclusion:
Thus, the energy dissipated by frictionis
(c)
The change in kinetic energy of the sled.
(c)

Explanation of Solution
Given:
The mass of sled is
The coefficient of friction between sled and road is
The distance traveled by sled is
The force applied to the sled is
Formula used:
Write the expression for work done by external force.
Here,
Write the expression for friction force.
Here,
Write the expression for thermal energy.
Here,
Substitute
The free body diagram of sled is given below.
Write the expression for resultant force in vertical direction.
Here,
Substitute
Substitute
Total energy of sled is conserved at all points. Work done by external force is equal to the sum of change in gravitational potential energy, kinetic energy and thermal energy.
Write the expression of work done by external force.
Here,
The height of sled is constant all the time; so, change in potential energy is zero.
Substitute
Calculation:
Substitute
Substitute
Substitute
Conclusion:
Thus, the change in kinetic energy of the sled is
(d)
The speed of sled after it has traveled
(d)

Explanation of Solution
Given:
The mass of sled is
The coefficient of friction between sled and road is
The distance traveled by sled is
The force applied to the sled is
Formula used:
Write the expression for work done by external force.
Here,
Write the expression for friction force.
Here,
Write the expression for thermal energy.
Here,
Substitute
The free body diagram of sled is given below.
Write the expression for resultant force in vertical direction.
Here,
Substitute
Substitute
Total energy of sled is conserved at all points. Work done by external force is equal to the sum of change in gravitational potential energy, kinetic energy and thermal energy.
Write the expression of work done by external force.
Here,
The height of car is constant all the time; so, change in potential energy is zero.
Substitute
Write the expression for change in kinetic energy.
Rearrange the above expression in terms of
Here,
Calculation:
Substitute
Substitute
Substitute
Substitute
Conclusion:
Thus, the speed of sled after it has traveled
Want to see more full solutions like this?
Chapter 7 Solutions
Physics for Scientists and Engineers, Vol. 1
- need help part a and barrow_forwardComplete the table below for spherical mirrors indicate if it is convex or concave. Draw the ray diagrams S1 10 30 S1' -20 20 f 15 -5 Marrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be(F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the scalar product v→F→. Work the problem out symbolically first, then plug in numbers after you've simplified the symbolic expression.arrow_forward
- Need help wity equilibrium qestionarrow_forwardneed answer asap please thanks youarrow_forwardA man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forward
- A golf ball is struck with a velocity of 20 m/s at point A as shown below (Figure 4). (a) Determine the distance "d" and the time of flight from A to B; (b) Determine the magnitude and the direction of the speed at which the ball strikes the ground at B. 10° V₁ = 20m/s 35º Figure 4 d Barrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





