a.
Find the
a.
Answer to Problem 56CE
The probability that fewer than five employees steal is 0.0262.
Explanation of Solution
In order to qualify as a binomial problem, it must satisfy the following conditions.
- There are only two mutually exclusive outcomes, employees steal from their company and employees do not steal from their company.
- The number of trials is fixed, that is 50 people.
- The probability is constant for each trial, which is 0.20.
- The trials are independent of each other.
Thus, the problem satisfies all the conditions of a binomial distribution.
The mean can be obtained as follows:
The expected number of employees who steal is 10.
The standard deviation can be obtained as follows:
The standard deviation of number of employees who steal is 2.83.
The conditions for normal approximation to the binomial distribution are checked below:
The number of employees
Condition 1:
The condition 1 is satisfied.
Condition 2:
The condition 2 is satisfied.
The conditions 1 and 2 for normal approximation to the binomial distribution are satisfied.
Let the random variable X be the number of employees who steal from their company follows normal distribution with population mean
The probability that fewer than five employees steal can be obtained as follows:
Step-by-step procedure to obtain probability of Z less than –1.94 using Excel:
- Click on the Formulas tab in the top menu.
- Select Insert function. Then from category box, select Statistical and below that NORM.S.DIST.
- Click OK.
- In the dialog box, Enter Z value as –1.94.
- Enter Cumulative as TRUE.
- Click OK, the answer appears in Spreadsheet.
The output obtained using Excel is represented as follows:
From the above output, the probability of Z less than –1.94 is 0.0262.
Now consider the following:
Therefore, the probability that fewer than five employees steal is 0.0262.
b.
Find the probability that more than five employees steal.
b.
Answer to Problem 56CE
The probability that more than five employees steal is 0.9441.
Explanation of Solution
The population mean
The probability that more than five employees steal can be obtained as follows:
Step-by-step procedure to obtain probability of Z less than –1.59 using Excel:
- Click on the Formulas tab in the top menu.
- Select Insert
function . Then from category box, select Statistical and below that NORM.S.DIST. - Click OK.
- In the dialog box, Enter Z value as –1.59.
- Enter Cumulative as TRUE.
- Click OK, the answer appears in Spreadsheet.
The output obtained using Excel is represented as follows:
From the above output, the probability of Z less than –1.59 is 0.0559.
Now consider the following:
Therefore, the probability that more than five employees steal is 0.9441.
c.
Find the probability that exactly five employees steal.
c.
Answer to Problem 56CE
The probability that exactly five employees steal is 0.0297.
Explanation of Solution
The probability that exactly five employees steal can be obtained as follows:
From the part (a), the probability of Z less than –1.94 is 0.0262.
From the part (b), the probability of Z less than –1.59 is 0.0559.
Now consider,
Therefore, the probability that exactly five employees steal is 0.0297.
d.
Find the probability that more than 5 but fewer than 15 employees steal.
d.
Answer to Problem 56CE
The probability that more than 5 but fewer than 15 employees steal is 0.8882.
Explanation of Solution
The probability that more than 5 but fewer than 15 employees steal can be obtained as follows:
From the part (b), the probability of Z less than –1.59 is 0.0559.
Step-by-step procedure to obtain probability of Z less than 1.59 using Excel:
- Click on the Formulas tab in the top menu.
- Select Insert function. Then from category box, select Statistical and below that NORM.S.DIST.
- Click OK.
- In the dialog box, Enter Z value as 1.59.
- Enter Cumulative as TRUE.
- Click OK, the answer appears in Spreadsheet.
The output obtained using Excel is represented as follows:
From the above output, the probability of Z less than 1.59 is 0.9441.
Now consider,
Therefore, the probability that more than 5 but fewer than 15 employees steal is 0.8882.
Want to see more full solutions like this?
Chapter 7 Solutions
STATISTICAL TECHNIQUES FOR BUSINESS AND
- solve the question based on hw 1, 1.41arrow_forwardT1.4: Let ẞ(G) be the minimum size of a vertex cover, a(G) be the maximum size of an independent set and m(G) = |E(G)|. (i) Prove that if G is triangle free (no induced K3) then m(G) ≤ a(G)B(G). Hints - The neighborhood of a vertex in a triangle free graph must be independent; all edges have at least one end in a vertex cover. (ii) Show that all graphs of order n ≥ 3 and size m> [n2/4] contain a triangle. Hints - you may need to use either elementary calculus or the arithmetic-geometric mean inequality.arrow_forwardWe consider the one-period model studied in class as an example. Namely, we assumethat the current stock price is S0 = 10. At time T, the stock has either moved up toSt = 12 (with probability p = 0.6) or down towards St = 8 (with probability 1−p = 0.4).We consider a call option on this stock with maturity T and strike price K = 10. Theinterest rate on the money market is zero.As in class, we assume that you, as a customer, are willing to buy the call option on100 shares of stock for $120. The investor, who sold you the option, can adopt one of thefollowing strategies: Strategy 1: (seen in class) Buy 50 shares of stock and borrow $380. Strategy 2: Buy 55 shares of stock and borrow $430. Strategy 3: Buy 60 shares of stock and borrow $480. Strategy 4: Buy 40 shares of stock and borrow $280.(a) For each of strategies 2-4, describe the value of the investor’s portfolio at time 0,and at time T for each possible movement of the stock.(b) For each of strategies 2-4, does the investor have…arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forwardQuestion 6: Negate the following compound statements, using De Morgan's laws. A) If Alberta was under water entirely then there should be no fossil of mammals.arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardCharacterize (with proof) all connected graphs that contain no even cycles in terms oftheir blocks.arrow_forwardLet G be a connected graph that does not have P4 or C3 as an induced subgraph (i.e.,G is P4, C3 free). Prove that G is a complete bipartite grapharrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning