PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
6th Edition
ISBN: 9781429206099
Author: Tipler
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 53P
(a)
To determine
The height
(b)
To determine
The maximum speed of the bungee jumper.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A block of mass m and speed v collides with a spring,compressing it a distance ∆x. What is the compression of thespring if the force constant of the spring is increased by a factorof four?
You decide to launch a rockof mass m1 using a tube containing a spring of spring constant k. When the spring is at equilibrium, it fills the entire tube. To launch a rock, you push it into the tube, compressing the spring a distance d, at which point a locking mechanism holds the spring(and the rock) in place. When the lockis released, the spring pushes the rock to the end of the tube where it will be launched into the air. The coefficient of kinetic friction between the rock and the inside surface of the tube is given by μk. You setup the launcher at an angle q above the horizontal with the spring end buried such that when the spring is compressed and locked, the rock is at ground level.
a)Find the work done on the rock by non-conservative forces as it moves from the point of release to the end of the tube. Express your answer in terms of μk, m1, q, d, and any necessaryconstants.
b) Find the velocity of the rockvfas it exits the launch tube in terms of μk, k, m1, q, d, and any…
The only force acting on a 2.0 kg body as itmoves along a positive x axis has an x component Fx 6x N,with x in meters.The velocity at x = 3.0 m is 8.0 m/s. (a)What is thevelocity of the body at x = 4.0 m? (b) At what positive value of xwill the body have a velocity of 5.0 m/s?
Chapter 7 Solutions
PHYSICS F/SCI.+ENGRS.,STAND.-W/ACCESS
Ch. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10P
Ch. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Prob. 16PCh. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - Prob. 55PCh. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67PCh. 7 - Prob. 68PCh. 7 - Prob. 69PCh. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - Prob. 73PCh. 7 - Prob. 74PCh. 7 - Prob. 75PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - Prob. 79PCh. 7 - Prob. 80PCh. 7 - Prob. 81PCh. 7 - Prob. 82PCh. 7 - Prob. 83PCh. 7 - Prob. 84PCh. 7 - Prob. 85PCh. 7 - Prob. 86PCh. 7 - Prob. 87PCh. 7 - Prob. 88PCh. 7 - Prob. 89PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 97PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Prob. 100PCh. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Prob. 103PCh. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A student working on a school project modeled a trampoline as a spring obeying Hookes law and measured the spring constant of a certain trampoline as 4617 N/m. If a child of mass 27.0 kg compresses the trampoline vertically by a maximum of 0.25 m, while bouncing up and down, what is the childs acceleration at the moment of maximum compression?arrow_forwardCheck Your Understanding The U.S. Air Force uses “10gs” (an acceleration equal to 109.8m/s2 ) as the maximum acceleration a human can withstand (but only tot several seconds) aid survive. How much time must the Enterprise spend accelerating if the humans on board are to experience an average at most 10gs of acceleration? (Assume the inertial dampeners are offline.)arrow_forwarda mother and her child are skiing together, and the mother is holding the end of a rope tied to the child's waist. They are moving at a speed of 7.2 kph on a gently sloping portion of the ski slope when the morher observes that they are approaching a steep descrnt. She pulls on the rope with an average force of 15 N. Knowing the coefficient of frivtion between the mother and the ground is 0.2, the mass of the mother is 62 kg and the angle of the rope does not change, determine the acceleration of the mother, the time reuired dor the mother's speed to be cut in half, and the distance traveled.arrow_forward
- A bungee cord is rated at 545N/m. The jump is off a bridge above a river. Unstretched, the bungee cord is 68.0 m long. A 72.0 kg person jumps. They fall till and the cord begins to stretch. Find the amount by which cord has stretched when the person’s speed is 14.0 m/s.arrow_forwardA daredevil wishes to bungee-jump from a hot-air balloon 64.5 m above a carnival midway. He will use a piece of uniform elastic cord tied to a harness around his body to stop his fall at a point 12.0 m above the ground. Model his body as a particle and the cord as having negligible mass and a tension force described by Hooke's force law. In a preliminary test, hanging at rest from a 5.00-m length of the cord, the jumper finds that his body weight stretches it by 1.65 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the stationary balloon. (a) What length of cord should he use? m(b) What maximum acceleration will he experience? m/s2arrow_forwardIn the figure, a runaway truck with failed brakes is moving downgrade at 109 km/h just before the driver steers the truck up a frictionless emergency escape ramp with an inclination of 0 = 17°. The truck's mass is 1.3 x 104 kg. (a) What minimum length Lmust the ramp have if the truck is to stop (momentarily) along it? (Assume the truck is a particle, and justify that assumption.) Does the minimum length Lincrease, decrease, or remain the same if (b) the truck's mass is decreased and (c) its speed is decreased? (a) Number i Units (b) (c)arrow_forward
- a 1.75-kg block at rest on a ramp of height h.When the block is released, it slides without friction to the bottomof the ramp, and then continues across a surface that is frictionlessexcept for a rough patch of width 10.0 cm that has a coefficientof kinetic friction mk = 0.640. Find h such that the block’s speedafter crossing the rough patch is 3.50 m>s.arrow_forward1) A daredevil plans to bungee jump from a balloon 73.0 m above a carnival midway. They will use a uniform elastic cord tied to a harness around their body, to stop their fall at a point 10.0 m above the ground. Model their body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test, hanging at rest from a 5.00 m length of the cord, they find that their body weight stretches it by 1.35 m. They will drop from rest at the point where the top end of a longer section of the cord is attached to the stationary balloon. Hint: To find the K of the actual cord, use the following proportion with the preliminary test cord (KTest *LTest=KActual*Lactual) where L is the length of the cord.arrow_forwardA 1.5-kg box is released from rest on a frictionless surface that is sloped at θ = 35◦ above the horizontal.After sliding 1.0 m down the slope, the box transitions smoothly to a rough, horizontal surface, slides forsome distance, and then comes to a stop. If the coefcient of kinetic friction between the box and thehorizontal surface is 0.12, how far along the horizontal surface does the box travel?arrow_forward
- phyarrow_forwardAn object of mass m is traveling on a horizontal surface. There is a coefficient ofkinetic friction µ between the object and the surface. The object has speed v when itreaches x=0 and encounters a spring. The object compresses the spring, stops, and thenrecoils and travels in the opposite direction. When the object reaches x=0 on its returntrip, it stops. Find k, the spring constant, in terms of µ, m, g, and varrow_forwardThe spring force is initially greater than friction, so the block accelerates forward. But eventually the spring force decreases enough so that it is le (decelerates). In a physics lab experiment, one end of a horizontal spring that obeys Hooked's law is attached to a wall. The spring is compressed æo = 0.400 m, and a block with mass 0.300 kg is attached to horizontal surface. Electronic sensors measure the speed v of the block after it has traveled a distance d from its initial position against the compressed spring. The measured The spring is then released, and the block moves along a O The spring force is always less than friction, so the block decelerates all the time. values are listed in the table below. Submit Previous Answers d (m) v (m/s) v Correct 0.05 0.85 0.10 1.11 Part B 0.15 1.24 0.25 1.26 Use the work-energy theorem to derive an expression for v? in terms of d. Do not substitute the value of æo into the expression. 0.30 1.14 0.35 0.90 Express your answer in terms of some…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY