
EBK COLLEGE PHYSICS, VOLUME 2
11th Edition
ISBN: 8220103599924
Author: Vuille
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 52AP
The dung beetle is known as one of the strongest animals for its size, often forming balls of dung up to 10 times their own mass and rolling them to locations where they can be buried and stored as food. A typical dung ball formed by the species K. nigroaeneus has a radius of 2.00 cm and is rolled by the beetle at 6.25 cm/s. (a) What is the rolling ball’s angular speed? (b) How many full rotations are required if the beetle rolls the ball a distance of 1.00 m?
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Imagine a planet where gravity mysteriously acts tangent to the equator and in the eastward directioninstead of radially inward. Would this force do work on an object moving on the earth? What is the sign ofthe work, and does it depend on the path taken? Explain by using the work integral and provide a sketch ofthe force and displacement vectors. Provide quantitative examples.
If a force does zero net work on an object over a closed loop, does that guarantee the force is conservative? Explain with an example or counterexample
A futuristic amusement ride spins riders in a horizontal circle of radius 5 m at a constant speed. Thefloor drops away, leaving riders pinned to the wall by friction (coefficient µ = 0.4). What minimum speedensures they don’t slip, given g = 10 m/s²? Draw diagram (or a few) showing all forces, thevelocity of the rider, and their acceleration
Chapter 7 Solutions
EBK COLLEGE PHYSICS, VOLUME 2
Ch. 7.1 - A rigid body is rotating counterclockwise about a...Ch. 7.1 - Suppose the change in angular position for each of...Ch. 7.2 - Consider again the pairs of angular positions for...Ch. 7.3 - Andrea and Chuck are riding on a merry-go-round....Ch. 7.3 - When the merry-go-round of Quick Quiz 7.4 is...Ch. 7.3 - A racetrack is constructed such that two arcs of...Ch. 7.3 - An object moves in a circular path with constant...Ch. 7.5 - A ball is falling toward the ground. Which of the...Ch. 7.5 - A planet has two moons with identical mass. Moon 1...Ch. 7.5 - Suppose an asteroid has a semimajor axis of 4 AU....
Ch. 7 - A disk rotates about an axis through its center....Ch. 7 - Suppose an alien civilization has a space station...Ch. 7 - If a cars wheels are replaced with wheels of...Ch. 7 - Objects moving along a circular path have a...Ch. 7 - A pendulum consists of a small object called a bob...Ch. 7 - Because of Earths rotation about its axis, you...Ch. 7 - It has been suggested that rotating cylinders...Ch. 7 - Describe the path of a moving object in the event...Ch. 7 - A pail of water can be whirled in a vertical...Ch. 7 - A car of mass m follows a truck of mass 2m around...Ch. 7 - Is it possible for a car to move in a circular...Ch. 7 - A child is practicing for a BMX race. His speed...Ch. 7 - An object executes circular motion with constant...Ch. 7 - Convert (a) 47.0 to radians, (b) 12.0 rad to...Ch. 7 - A bicycle tire is spinning clockwise at 2.50...Ch. 7 - The tires on a new compact car have a diameter of...Ch. 7 - A potters wheel moves uniformly from rest to an...Ch. 7 - A dentists drill starts from rest. After 3.20 s of...Ch. 7 - A centrifuge in a medical laboratory rotates at an...Ch. 7 - A bicyclist starting at rest produces a constant...Ch. 7 - A bicycle is turned upside down while its owner...Ch. 7 - The diameters of the main rotor and tail rotor of...Ch. 7 - The tub of a washer goes into its spin-dry cycle,...Ch. 7 - A car initially traveling at 29.0 m/s undergoes a...Ch. 7 - A 45.0-cm diameter disk rotates with a constant...Ch. 7 - A rotating wheel requires 3.00 s to rotate 37.0...Ch. 7 - An electric motor rotating a workshop grinding...Ch. 7 - A car initially traveling eastward turns north by...Ch. 7 - It has been suggested that rotating cylinders...Ch. 7 - (a) What is the tangential acceleration of a bug...Ch. 7 - An adventurous archeologist (m = 85.0 kg) tries to...Ch. 7 - One end of a cord is fixed and a small 0.500-kg...Ch. 7 - Human centrifuges are used to train military...Ch. 7 - A 55.0-kg ice skater is moving at 4.00 m/s when...Ch. 7 - A 40.0-kg child swings in a swing supported by two...Ch. 7 - A certain light truck can go around a flat curve...Ch. 7 - A sample of blood is placed in a centrifuge of...Ch. 7 - A 50.0-kg child stands at the rim of a...Ch. 7 - A space habitat for a long space voyage consists...Ch. 7 - An air puck of mass m1 = 0.25 kg is tied to a...Ch. 7 - A snowboarder drops from rest into a halfpipe of...Ch. 7 - A woman places her briefcase on the backseat of...Ch. 7 - A pail of water is rotated in a vertical circle of...Ch. 7 - A 40.0-kg child takes a ride on a Ferris wheel...Ch. 7 - Prob. 32PCh. 7 - (a) Find the magnitude of the gravitational force...Ch. 7 - The International Space Station has a mass of 4.19...Ch. 7 - A coordinate system (in meters) is constructed on...Ch. 7 - Prob. 36PCh. 7 - Objects with masses of 200. kg and 500. kg are...Ch. 7 - Use the data of Table 7.3 to find the point...Ch. 7 - Prob. 39PCh. 7 - Two objects attract each other with a...Ch. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - A satellite of Mars, called Phoebus, has an...Ch. 7 - Prob. 44PCh. 7 - A comet has a period of 76.3 years and moves in an...Ch. 7 - Additional Problems A synchronous satellite. which...Ch. 7 - (a) One of the moons of Jupiter, named Io, has an...Ch. 7 - Neutron stars are extremely dense objects that are...Ch. 7 - One method of pitching a softball is called the...Ch. 7 - A digital audio compact disc (CD) carries data...Ch. 7 - An athlete swings a 5.00-kg ball horizontally on...Ch. 7 - The dung beetle is known as one of the strongest...Ch. 7 - Prob. 53APCh. 7 - A 0.400-kg pendulum bob passes through the lowest...Ch. 7 - A car moves at speed v across a bridge made in the...Ch. 7 - Keratinocytes are the most common cells in the...Ch. 7 - Because of Earths rotation about its axis, a point...Ch. 7 - A roller coaster travels in a circular path, (a)...Ch. 7 - In Robert Heinleins The Moon Is a Harsh Mistress,...Ch. 7 - A model airplane of mass 0.750 kg flies with a...Ch. 7 - In a home laundry dryer, a cylindrical tub...Ch. 7 - Casting of molten metal is important in many...Ch. 7 - A skier starts at rest at the top of a large...Ch. 7 - A stuntman whose mass is 70 kg swings from the end...Ch. 7 - Suppose a 1 800-kg car passes over a bump in a...Ch. 7 - The pilot of an airplane executes a constant-speed...Ch. 7 - Prob. 67APCh. 7 - A coin rests 15.0 cm from the center of a...Ch. 7 - A 4.0-kg object is attached to a vertical rod by...Ch. 7 - A 0.275-kg object is swung in a vertical circular...Ch. 7 - (a) A luggage carousel at an airport has the form...Ch. 7 - The maximum lift force on a bat is proportional to...Ch. 7 - In a popular amusement park ride, a rotating...Ch. 7 - A massless spring of constant k = 78.4 N/m is...Ch. 7 - A 0.50-kg ball that is tied to the end of a 1.5-m...
Additional Science Textbook Solutions
Find more solutions based on key concepts
6. How can you use the features found in each chapter?
Human Anatomy & Physiology (2nd Edition)
What were the major microbiological interests of Martinus Beijerinck and Sergei Winogradsky? It can be said tha...
Brock Biology of Microorganisms (15th Edition)
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (3rd Edition)
Separate the list P,F,V,,T,a,m,L,t, and V into intensive properties, extensive properties, and nonproperties.
Fundamentals Of Thermodynamics
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Your RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? 0.00897 × H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? 8.97 * ΜΩarrow_forwardYour RL circuit has a characteristic time constant of 19.5 ns, and a resistance of 4.60 MQ. (a) What is the inductance (in H) of the circuit? H (b) What resistance (in MQ) should you use (instead of the 4.60 MQ resistor) to obtain a 1.00 ns time constant, perhaps needed for quick response in an oscilloscope? ΜΩarrow_forwardAt a distance of 0.212 cm from the center of a charged conducting sphere with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.598 cm from the center of the sphere? At a distance of 0.196 cmcm from the axis of a very long charged conducting cylinder with radius 0.100cm, the electric field is 485 N/C . What is the electric field 0.620 cm from the axis of the cylinder? At a distance of 0.202 cm from a large uniform sheet of charge, the electric field is 485 N/C . What is the electric field 1.21 cm from the sheet?arrow_forward
- A hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.67 × 10−6 C/m2. A charge of -0.800 μC is now introduced into the cavity inside the sphere. What is the new charge density on the outside of the sphere? Calculate the strength of the electric field just outside the sphere. What is the electric flux through a spherical surface just inside the inner surface of the sphere?arrow_forwardA point charge of -3.00 μC is located in the center of a spherical cavity of radius 6.60 cm inside an insulating spherical charged solid. The charge density in the solid is 7.35 × 10−4 C/m3. Calculate the magnitude of the electric field inside the solid at a distance of 9.10 cm from the center of the cavity. Find the direction of this electric field.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance r from the axis of the cylindrical rod? Express your answer in terms of λ, r, and ϵ0, the permittivity of free space. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouterσouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.) What is the radial component of the electric field, E(r), outside the shell?arrow_forward
- A very long conducting tube (hollow cylinder) has inner radius aa and outer radius b. It carries charge per unit length +α, where αα is a positive constant with units of C/m. A line of charge lies along the axis of the tube. The line of charge has charge per unit length +α. Calculate the electric field in terms of α and the distance r from the axis of the tube for r<a. Calculate the electric field in terms of α and the distance rr from the axis of the tube for a<r<b. Calculate the electric field in terms of αα and the distance r from the axis of the tube for r>b. What is the charge per unit length on the inner surface of the tube? What is the charge per unit length on the outer surface of the tube?arrow_forwardTwo small insulating spheres with radius 9.00×10−2 m are separated by a large center-to-center distance of 0.545 m . One sphere is negatively charged, with net charge -1.75 μC , and the other sphere is positively charged, with net charge 3.70 μC . The charge is uniformly distributed within the volume of each sphere. What is the magnitude E of the electric field midway between the spheres? Take the permittivity of free space to be ϵ0 = 8.85×10−12 C2/(N⋅m2) . What is the direction of the electric field midway between the spheres?arrow_forwardA conducting spherical shell with inner radius aa and outer radius bb has a positive point charge Q located at its center. The total charge on the shell is -3Q, and it is insulated from its surroundings. Derive the expression for the electric field magnitude in terms of the distance r from the center for the region r<a. Express your answer in terms of some or all of the variables Q, a, b, and appropriate constants. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region a<r<b. Derive the expression for the electric field magnitude in terms of the distance rr from the center for the region r>b. What is the surface charge density on the inner surface of the conducting shell? What is the surface charge density on the outer surface of the conducting shell?arrow_forward
- A small sphere with a mass of 3.00×10−3 g and carrying a charge of 4.80×10−8 C hangs from a thread near a very large, charged insulating sheet, as shown in the figure (Figure 1). The charge density on the sheet is −2.20×10−9 C/m2 . Find the angle of the thread.arrow_forwardA small conducting spherical shell with inner radius aa and outer radius bb is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. Calculate the magnitude of the electric field in terms of q and the distance rr from the common center of the two shells for r<a. Calculate the magnitude of the electric field for a<r<b. Calculate the magnitude of the electric field for b<r<c.arrow_forwardA cube has sides of length L = 0.800 m . It is placed with one corner at the origin as shown in the figure. The electric field is not uniform but is given by E→=αxi^+βzk^, where α=−3.90 and β= 7.10. What is the sum of the flux through the surface S5 and S6? What is the sum of the flux through the surface S2 and S4? Find the total electric charge inside the cube.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Rotational Kinematics Physics Problems, Basic Introduction, Equations & Formulas; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=0El-DqrCTZM;License: Standard YouTube License, CC-BY