
Concept explainers
Coulomb Friction Revlslted In Problem 27 in Chapter 5 in Review we examined a spring/mass system in which a mass m slides over a dry horizontal surface whose coefficient of kinetic friction is a constant μ. The constant retarding force fk = μmg of the dry surface that acts opposite to the direction of motion is called Coulomb friction after the French physicist Charles-Augustin de Coulomb (1736–1806). You were asked to show that the piecewise-linear differential equation for the displacement x(t) of the mass is given by
- (a) Suppose that the mass is released from rest from a point x(0) = x0 > 0 and that there are no other external forces. Then the differential equations describing the motion of the mass m are
x″ + ω2x = F, 0 < t < T/2
x″ + ω2x = −F, T/2 < t < T
x″ + ω2x = F, T < t < 3T/2,
and so on, where ω2 = k/m, F = fk/m = μg, g = 32, and T = 2π/ω. Show that the times 0, T/2, T, 3T/2, ... correspond to x′(t) = 0.
- (b) Explain why, in general, the initial displacement must satisfy ω2 |x0| > F.
- (c) Explain why the interval −F/ω2 ≤ x ≤ F/ω2 is appropriately called the “dead zone” of the system.
- (d) Use the Laplace transform and the concept of the meander function to solve for the displacement x(t) for t ≥ 0.
- (e) Show that in the case m = 1, k = 1, fk = 1, and x0 = 5.5 that on the interval [0, 2π) your solution agrees with parts (a) and (b) of Problem 28 in Chapter 5 in Review.
- (f) Show that each successive oscillation is 2F/ω2 shorter than the preceding one.
- (g) Predict the long-term behavior of the system.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
FIRST CRSE.IN DIFF.EQUAT..-ACCESS
- Let R be field and X= R³/s Vector space over R M=(a,b,c)labic, e Rra+b= 3- <3 Show that Ms and why with proof. 1) is convexset and affine set of botost ii) is blanced set and symmetirs set of x iii) is hy per space and hyper plane ofx or hot iii) find f:MR st kerf = M 18/103 and finnd fiM→R/{0} st M= {xEX, f(t) = x, texiαER? jiii) show that Mis Maxsubspace or not and Mis a max. affine set or not.arrow_forwardSolve the next ED: (see image)arrow_forwardWrite an equation for the polynomial graphed below. It will probably be easiest to leave your "a" value as a fraction. 8 7 + 9+ H 6 5 4 3 + 3 2 1 (-30) (-1,0) (1,0) (3,0) + -5 -4 -3 -2 2 3 4 7 2 -1 -2 3 (0,-3) f(x) = 456 -4 -5 -6+arrow_forward
- Write an equation for the polynomial graphed below 5+ 4 - 3 2 1 + + -5 4-3 -2 -1 1 2 3 4 5 -1 -2 y(x) = -3 -4 5 -5+ Qarrow_forwardWrite an equation for the polynomial graphed below 6+ 5 + -5 -4 3 y(x) = 4 3 2 1 -1 1 1 -1 -2 -3 -4 -5 2 3 4 5arrow_forwardWrite an equation for the polynomial graphed below 5+ 4 3 1 + + + -5-4-3-2 1 13 4 5 -1 -2 -3 -4 -5+ 4 5 Q y(x) =arrow_forward
- 1. Name the ongiewing) 2. Name five pairs of supple 3 27 and 19 form a angles 210 and 21 are complementary angies 4. m210=32 mal!= 5 mc11-72 m10= 6 m210-4x mc11=2x x= 7 m210=x m 11 =x+20; x= 12 and 213 are supplementary angles 8 ma 12 2y m13-3y-15 y= 9 m 12-y+10 m13-3y+ 10: y= 10. The measure of 212 is five times the measure of 13. Find the 213 and 214 are complementary angles, and 14 and 15 are supplementary angies 11 mc13 47 m/14- 12 m 14-78 m13- m215- m15 13 m15-135 m. 13- m.14arrow_forward3. Solve the inequality, and give your answer in interval notation. - (x − 4)³ (x + 1) ≥ 0arrow_forward1. Find the formula to the polynomial at right. Show all your work. (4 points) 1- 2 3 сл 5 6 -4 -3 -2 -1 0 2 3arrow_forward
- 2. Find the leading term (2 points): f(x) = −3x(2x − 1)²(x+3)³ -arrow_forward1- √ √ √³ e³/√xdy dx 1 cy² 2- √ √² 3 y³ exy dx dy So 3- √ √sinx y dy dx 4- Jo √² Sy² dx dyarrow_forwardA building that is 205 feet tall casts a shadow of various lengths æ as the day goes by. An angle of elevation is formed by lines from the top and bottom of the building to the tip of the shadow, as de seen in the following figure. Find the rate of change of the angle of elevation when x 278 feet. dx Round to 3 decimal places. Γ X radians per footarrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education





