Electrical Transformers and Rotating Machines
Electrical Transformers and Rotating Machines
4th Edition
ISBN: 9781337264419
Author: Stephen L. Herman
Publisher: Cengage Learning US
bartleby

Concept explainers

Question
Book Icon
Chapter 7, Problem 4P
To determine

The missing values.

Expert Solution & Answer
Check Mark

Explanation of Solution

The given values are shown in below table:

Alternator (A)Load 1 (L1)Load 2 (L2)Load 2 (L2)
EP(A) EP(L1) EP(L2) EP(L3) 
IP(A) IP(L1) IP(L2) IP(L3) 
EL(A)480EL(L1) EL(L2) EL(L3) 
IL(A) IL(L1) IL(L2) IL(L3) 
  R(Phase)12ΩXL(Phase)16ΩXC(Phase)10Ω
  P VARsL VARsC 

Refer to the circuit shown in Figure 7-21, all the both loads L1, L2, and L3 are connected to the alternator. Thus, the line voltages are equal.

  EL(A)=EL(L1)=EL(L2)=EL(L3)=480

Consider load 3:

Here, the load 3 is made by 3 capacitors and uses wye connection. In wye connection, the line voltage is equal to 3 times phase voltage.

Thus,

  EL(L3)=3EP(L3)EP(L3)=EL(L3)3=4803=277.13

Calculate the phase current of the load 3(IP(L3)).

  IP(L3)=EP(L3)XC(phase)=277.1310Ω=27.71

In wye connection, the phase current (IP) and line current (IL) are equal.

Thus,

  IL(L3)=IP(L3)IL(L3)=27.71

Here, the load 3 is pure capacitive, the voltage and current are 90° out of phase with each other. Thus, the power factor becomes zero.

Calculate the reactive power of load 3 (VARsC).

  VARsC=3×EL(L3)×IL(L3)=3×480×27.713=23040.16

Consider load 2:

Here, the load 2 is made by 3 inductors and uses delta connection. In delta connection, the line voltage is equal to phase voltage.

  EP(L2)=EL(L2)EP(L2)=480

Calculate the phase current of the load 2(IP(L2)).

  IP(L2)=EP(L2)XL(phase)=48016Ω=30

Calculate the line current of the load 2 (IL(L2)).

  IL(L2)=3×IP(L2)=3×30=51.961551.96

Calculate the inductive power of load 2 (VARsL).

  VARsL=3×EL(L2)×IL(L2)=3×480×51.96=43198.73

Consider load 1:

Here, the load 1 is made by 3 resistors and uses wye connection. In wye connection, the line voltage is equal to 3 times phase voltage.

Thus,

  EL(L1)=3EP(L1)EP(L1)=EL(L1)3=4803=277.13

Calculate the phase current of the load 1(IP(L1)).

  IP(L1)=EP(L1)R=277.1312=23.0942

Here, the load 1 is made by 3 resistors and uses wye connection. In wye connection, the line current is equal to phase current.

  IL(L1)=IP(L1)IL(L1)=23.0942

Calculate the resistive power of load 1(P).

  P=3×EL(L1)×IL(L1)=3×480×23.0942=19200.13

Consider the alternator:

Since, the alternator is connected to the loads such as resistive (R), inductive (L), and capacitive (C).

Calculate the total current supplied by the alternator to the RLC circuit.

  IL(A)=[IL(L1)]2+[IL(L2)IL(L3)]2=23.09422+(51.9627.71)2=33.487333.49

Here, the alternator uses wye connection. In wye connection, the line current is equal to phase current.

  IP(A)=IL(A)IP(A)=33.49

In wye connection, the line voltage is equal to 3 times phase voltage.

Thus,

  EL(A)=3EP(A)EP(A)=EL(A)3=4803=277.13

Calculate the apparent power of alternator (VA).

  VA=3×EL(A)×IL(A)=3×480×33.49=27843.06

Thus, the all missing values are calculated and shown in below table:

Alternator (A)Load 1 (L1)Load 2 (L2)Load 2 (L2)
EP(A)277.13EP(L1)277.13EP(L2)480EP(L3)277.13
IP(A)33.49IP(L1)23.09IP(L2)30IP(L3)27.71
EL(A)480EL(L1)480EL(L2)480EL(L3)480
IL(A)33.49IL(L1)23.09IL(L2)51.96IL(L3)27.71
VA27843.06R(Phase)12ΩXL(Phase)16ΩXC(Phase)10Ω
  P33255.36VARsL43198.73VARsC23040.16

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
||! Sign in MMB241 - Tutorial L9.pd X PDF MMB241 - Tutorial L10.pX DE MMB241 - Tutorial L11.p x PDF Lecture W12 - Work and X File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L11.pdf PDE Lecture W11 - Power and X Draw Alla | Ask Copilot ++ 3 of 3 | D 6. If the 50-kg load A is hoisted by motor M so that the load has a constant velocity of 1.5 m/s, determine the power input to the motor, which operates at an efficiency € = 0.8. 1.5 m/s 2 7. The sports car has a mass of 2.3 Mg, and while it is traveling at 28 m/s the driver causes it to accelerate at 5m/s². If the drag resistance on the car due to the wind is FD= 0.3v²N, where v is the velocity in m/s, determine the power supplied to the engine at this instant. The engine has a running efficiency of P = 0.68. 8. If the jet on the dragster supplies a constant thrust of T-20 kN, determine the power generated by the jet as a function of time. Neglect drag and rolling resistance, and the loss of fuel. The dragster has a mass of 1…
Q | Sign in PDE Lecture W09.pdf PDF MMB241 - Tutorial L9.pdi X PDF MMB241 - Tutorial L10.p X PDF MMB241 - Tutorial L11.p X Lecture W12-Work and X + File C:/Users/KHULEKANI/Desktop/mmb241/Lecture%20W12%20-%20Work%20and%20Energy.pdf ||! Draw | IA | a | Ask Copilot Class Work + 33 of 34 D Question 1 The engine of a 3500-N car is generating a constant power of 50 hp (horsepower) while the car is traveling up the slope with a constant speed. If the engine is operating with an efficiency of € 0.8, determine the speed of the car. Neglect drag and rolling resistance. Use g 9.81 m/s² and 1 hp = 745.7 W. 10 го Question 2 A man pushes on a 60-N crate with a force F. The force is always directed downward at an angle of 30° from the horizontal, as shown in the figure. The magnitude of the force is gradually increased until the crate begins to slide. Determine the crate's initial acceleration once it starts to move. Assume the coefficient of static friction is μ = 0.6, the coefficient of kinetic…
state is Derive an expression for the volume expansivity of a substance whose equation of RT P = v-b a v(v + b)TZ where a and b are empirical constants.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Electrical Transformers and Rotating Machines
Mechanical Engineering
ISBN:9781305494817
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning