Concept explainers
The missing values.

Explanation of Solution
The given values are shown in below table:
Alternator (A) | Load 1 (L1) | Load 2 (L2) | Load 2 (L2) | ||||
480 | |||||||
P |
Refer to the circuit shown in Figure 7-21, all the both loads L1, L2, and L3 are connected to the alternator. Thus, the line voltages are equal.
Consider load 3:
Here, the load 3 is made by 3 capacitors and uses wye connection. In wye connection, the line voltage is equal to
Thus,
Calculate the phase current of the load 3
In wye connection, the phase current
Thus,
Here, the load 3 is pure capacitive, the voltage and current are 90° out of phase with each other. Thus, the power factor becomes zero.
Calculate the reactive power of load 3
Consider load 2:
Here, the load 2 is made by 3 inductors and uses delta connection. In delta connection, the line voltage is equal to phase voltage.
Calculate the phase current of the load 2
Calculate the line current of the load 2
Calculate the inductive power of load 2
Consider load 1:
Here, the load 1 is made by 3 resistors and uses wye connection. In wye connection, the line voltage is equal to
Thus,
Calculate the phase current of the load 1
Here, the load 1 is made by 3 resistors and uses wye connection. In wye connection, the line current is equal to phase current.
Calculate the resistive power of load 1
Consider the alternator:
Since, the alternator is connected to the loads such as resistive
Calculate the total current supplied by the alternator to the RLC circuit.
Here, the alternator uses wye connection. In wye connection, the line current is equal to phase current.
In wye connection, the line voltage is equal to
Thus,
Calculate the apparent power of alternator
Thus, the all missing values are calculated and shown in below table:
Alternator (A) | Load 1 (L1) | Load 2 (L2) | Load 2 (L2) | ||||
277.13 | 277.13 | 480 | 277.13 | ||||
33.49 | 23.09 | 30 | 27.71 | ||||
480 | 480 | 480 | 480 | ||||
33.49 | 23.09 | 51.96 | 27.71 | ||||
VA | 27843.06 | ||||||
P | 33255.36 | 43198.73 | 23040.16 |
Want to see more full solutions like this?
Chapter 7 Solutions
Electrical Transformers and Rotating Machines
- For a gas whose equation of state is P(v-b)=RT, the specified heat difference Cp-Cv is equal to which of the following (show all work): (a) R (b) R-b (c) R+b (d) 0 (e) R(1+v/b)arrow_forwardof state is Derive an expression for the specific heat difference of a substance whose equation RT P = v-b a v(v + b)TZ where a and b are empirical constants.arrow_forwardTemperature may alternatively be defined as T = ди v Prove that this definition reduces the net entropy change of two constant-volume systems filled with simple compressible substances to zero as the two systems approach thermal equilibrium.arrow_forward
- Using the Maxwell relations, determine a relation for equation of state is (P-a/v²) (v−b) = RT. Os for a gas whose av Tarrow_forward(◉ Homework#8arrow_forwardHomework#8arrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^ 2. After 2 seconds, how far do the boxes move? A бро Barrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^2. Both boxes are 0.25 m long and 0.25 m high. The cord is attached to the bottom of Box A and the middle of box B. After 2 seconds, how far do the boxes move? A From бро Barrow_forwardHomework#8arrow_forwardSign in PDF Lecture W09.pdf PDF MMB241 - Tutorial L9.pdf File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L9.pdf II! Draw | I│Alla | Ask Copilot + of 4 D Topic: Kinetics of Particles: - Forces in dynamic system, Free body diagram, newton's laws of motion, and equations of motion. TQ1. The 10-kg block is subjected to the forces shown. In each case, determine its velocity when t=2s if v 0 when t=0 500 N F = (201) N 300 N (b) TQ2. The 10-kg block is subjected to the forces shown. In each case, determine its velocity at s-8 m if v = 3 m/s at s=0. Motion occurs to the right. 40 N F = (2.5 s) N 200 N 30 N (b) TQ3. Determine the initial acceleration of the 10-kg smooth collar. The spring has an unstretched length of 1 m. 1 σ Q ☆ Q 6 ا الى ☑arrow_forwardSign in PDF Lecture W09.pdf PDF MMB241 - Tutorial L9.pdf File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L9.pdf II! Draw | I│Alla | Ask Copilot + 4 of 4 | D TQ9. If motor M exerts a force of F (10t 2 + 100) N determine the velocity of the 25-kg crate when t kinetic friction between the crate and the plane are μs The crate is initially at rest. on the cable, where t is in seconds, 4s. The coefficients of static and 0.3 and μk = 0.25, respectively. M 3 TQ10. The spring has a stiffness k = 200 N/m and is unstretched when the 25-kg block is at A. Determine the acceleration of the block when s = 0.4 m. The contact surface between the block and the plane is smooth. 0.3 m F= 100 N F= 100 N k = 200 N/m σ Q Q ☆ ا الى 6 ☑arrow_forwardmy ID# is 016948724 please solve this problem step by steparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Electrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Electrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning