
The magnet in the following photo is made from neodymium, iron, and boron.
A magnet mode of on alloy containing the elements Nd, Fe, and B.
- (a) Write the electron configuration of each of these elements using an orbital box diagram and noble gas notation.
- (b) Are these elements paramagnetic or diamagnetic?
- (c) Write the electron configurations of Nd3+ and Fe3+ using orbital box diagrams and noble gas notation. Are these ions paramagnetic or diamagnetic?
a)

Interpretation:
The electron configuration of Neodymium, iron, and boron has to be written using orbital box diagram.
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons (e-) of an given molecule or respective atoms in atomic or molecular orbital’s.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.
Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.
Answer to Problem 45GQ
Statement (a): The atomic number of Neodymium (Nd) (Z=60) electronic configuration of Neodymium (Nd)=
The electronic configuration of Iron (Fe) =
The electronic configuration of Boron (B) =
Statement (b): The all elements (
Statement (c): The orbital notation of Neodymium (Nd3+) ions=
To determine: The orbital notation method, noble gas configuration methods and Magnetic property should be explained given the different type of Neodymium (Nd), Iron (Fe) and Boron (B) element and its (Nd3+, Fe3+) ions.
Explanation of Solution
The electron configuration of Neodymium (Nd) element:
The orbital box diagram as follows,
Hence, the Noble gas configuration of
The electron configuration of Iron (Fe):
The orbital box diagram as follows,
Hence, the Noble gas configuration of
The electron configuration of Boron (B):
The orbital box diagram as follows,
Hence, the Noble gas configuration of
b)

Interpretation:
The magnetic property for the elements neodymium, iron, and Boron has to be predicted.
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons (e-) of an given molecule or respective atoms in atomic or molecular orbital’s.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.
Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.
Explanation of Solution
Analyzing for Magnetic properties:
The given Neodymium (Nd), Iron (Fe) and Boron (B) elements shows good paramagnetic character, because unpaired electrons are present.
The Iron (Fe) system is we discussed below,
It has four unpaired electrons which show paramagnetic property.
The Boron (B) system is we discussed below,
It has one unpaired electrons which shows paramagnetic property.
c)

Interpretation:
The electron configuration of Nd3+ and Fe3+ using orbital box diagram and its paramagnetic property has to be predicted.
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons (e-) of an given molecule or respective atoms in atomic or molecular orbital’s.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Paramagnetic: The Paramagnetic properties are due to the presence of some unpaired electrons, and from the realignment of the electron paths caused by the external magnetic field.
Diamagnetic properties: In diamagnetic materials all the electron are paired so there is no permanent net magnetic moment per atom.
Explanation of Solution
Electronic configuration of Neodymium (Nd3+) system
The Neodymium (Nd) was oxidized to Neodymium (Nd3+) ions, it lost for three electrons in outermost (4f and 6s) shells. Than this orbital filling method are shown below.
Electronic configuration of Iron (Fe3+) system
The Iron (Fe) was oxidized to Iron (Fe3+) ions, it lost for three electrons in outermost (4f and 6s) shells. Than this orbital filling method are shown below.
Analyzing for Magnetic properties for (Nd3+) and (Fe3+) systems:
The given Statement (c) Neodymium (Nd3+)and Iron (Fe3+) elements are very good paramagnetic character, because all electrons in unpaired only see the above orbital notation method. Than the both system electron filling method are shown below.
The Iron (Fe3+) system is we discussed below,
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry & Chemical Reactivity
- What is the IUPAC name of the following compound? CH₂CH₂ H CI H₂CH₂C H CH₂ Selected Answer: O (35,4R)-4 chloro-3-ethylpentane Correctarrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electrons-pushing arrows for the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. I I I H Select to Add Arrows HCI, CH3CH2OHarrow_forward
- Curved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and the follow the arrows to draw the intermediate and product in this reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the curved arrows to draw the intermediates and product of the following reaction or mechanistic step(s).arrow_forwardCurved arrows are used to illustrate the flow of electrons. Use the reaction conditions provided and follow the arrows to draw the intermediate and the product in this reaction or mechanistic step(s).arrow_forward
- Look at the following pairs of structures carefully to identify them as representing a) completely different compounds, b) compounds that are structural isomers of each other, c) compounds that are geometric isomers of each other, d) conformers of the same compound (part of structure rotated around a single bond) or e) the same structure.arrow_forwardGiven 10.0 g of NaOH, what volume of a 0.100 M solution of H2SO4 would be required to exactly react all the NaOH?arrow_forward3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forward
- 3.50 g of Li are combined with 3.50 g of N2. What is the maximum mass of Li3N that can be produced? 6 Li + N2 ---> 2 Li3Narrow_forwardConcentration Trial1 Concentration of iodide solution (mA) 255.8 Concentration of thiosulfate solution (mM) 47.0 Concentration of hydrogen peroxide solution (mM) 110.1 Temperature of iodide solution ('C) 25.0 Volume of iodide solution (1) used (mL) 10.0 Volume of thiosulfate solution (5:03) used (mL) Volume of DI water used (mL) Volume of hydrogen peroxide solution (H₂O₂) used (mL) 1.0 2.5 7.5 Time (s) 16.9 Dark blue Observations Initial concentration of iodide in reaction (mA) Initial concentration of thiosulfate in reaction (mA) Initial concentration of hydrogen peroxide in reaction (mA) Initial Rate (mA's)arrow_forwardDraw the condensed or line-angle structure for an alkene with the formula C5H10. Note: Avoid selecting cis-/trans- isomers in this exercise. Draw two additional condensed or line-angle structures for alkenes with the formula C5H10. Record the name of the isomers in Data Table 1. Repeat steps for 2 cyclic isomers of C5H10arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





