(a)
The expression for the two forces in unit vector notation.
(a)

Answer to Problem 45AP
The expression for the first force in unit vector notation is
Explanation of Solution
The mass of an object is
Write the formula to calculate the expression for the first force in unit vector notation is
Here,
Write the formula to calculate the expression for the second force in unit vector notation
Here,
Conclusion:
Substitute
Substitute
Therefore, the expression for the first force in unit vector notation is
(b)
The total force exerted on the object.
(b)

Answer to Problem 45AP
The total force exerted on the object is
Explanation of Solution
Write the formula to calculate the total force exerted on the object
Here,
Conclusion:
Substitute
Therefore, the total force exerted on the object is
(c)
The acceleration on the object.
(c)

Answer to Problem 45AP
The acceleration on the object is
Explanation of Solution
Write the formula to calculate the acceleration of the object
Here,
Conclusion:
Substitute
Therefore, the acceleration on the object is
(d)
The velocity on the object.
(d)

Answer to Problem 45AP
The velocity on the object is
Explanation of Solution
Write the formula to calculate the velocity of the object at
Here,
Conclusion:
Substitute
Therefore, the velocity on the object is
(e)
The position on the object.
(e)

Answer to Problem 45AP
The position on the object is
Explanation of Solution
Write the formula to calculate the position of the object
Here,
Substitute
Conclusion:
Therefore, the position on the object is
(f)
The kinetic energy of the object from the formula
(f)

Answer to Problem 45AP
The kinetic energy of the object from the formula
Explanation of Solution
Write the formula to calculate the magnitude of the final velocity of the object
Here,
Substitute
Write the formula to calculate the kinetic energy of the object
Conclusion:
Substitute
Therefore, the kinetic energy of the object from the formula
(g)
The kinetic energy of the object from the formula
(g)

Answer to Problem 45AP
The kinetic energy of the object from the formula
Explanation of Solution
Write the formula to calculate the magnitude of the initial velocity of the object
Here,
Substitute
Write the formula to calculate the final kinetic energy of the object
Conclusion:
Substitute
Therefore, the kinetic energy of the object from the formula
(h)
The conclusion by comparing the answer of part (f) and (g).
(h)

Explanation of Solution
Newton gave the law for the constant acceleration motion while the work energy theorem relates the work done by the object to its energy.
In part (f) the kinetic energy of the object is calculated with the help of Newton’s law while the kinetic energy in part (g) is calculated by the work energy theorem. Since in both the parts the kinetic energy of the object comes out to be same that conclude both the law and theorem are relevant to each other. The work energy theorem is consistent with the Newton’s law.
Conclusion:
Therefore, the work energy theorem is consistent with the Newton’s law of equation.
Want to see more full solutions like this?
Chapter 7 Solutions
Bundle: Physics for Scientists and Engineers, Volume 2, Loose-leaf Version, 10th + WebAssign Printed Access Card, Single-Term
- please answer this asap!!!!arrow_forwardRT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forward
- ганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forwardAn infinitely long conducting cylindrical rod with a positive charge λ per unit length is surrounded by a conducting cylindrical shell (which is also infinitely long) with a charge per unit length of −2λ and radius r1, as shown in the figure. What is σinner, the surface charge density (charge per unit area) on the inner surface of the conducting shell? What is σouter, the surface charge density on the outside of the conducting shell? (Recall from the problem statement that the conducting shell has a total charge per unit length given by −2λ.)arrow_forwardA small conducting spherical shell with inner radius aa and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What's the total charge on the inner surface of the small shell? What's the total charge on the outer surface of the small shell? What's the total charge on the inner surface of the large shell? What's the total charge on the outer surface of the large shell?arrow_forward
- A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius cc and outer radius d (Figure 1). The inner shell has total charge +2q, and the outer shell has charge −2q. What is the direction of the electric field for b<r<c? Calculate the magnitude of the electric field for c<r<d. Calculate the magnitude of the electric field for r>d.arrow_forwardTICE D Conservation of Momentum 1. A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. The astronaut is able to throw a spare 10.0 kg oxygen tank in a direction away from the shuttle with a speed of 12.0 m/s, propelling the astronaut back to the shuttle. Assuming that the astronaut starts from rest with respect to the shuttle, find the astronaut's final speed with respect to the shuttle after the tank is thrown. 2. An 85.0 kg fisherman jumps from a dock into a 135.0 kg rowboat at rest on the west side of the dock. If the velocity of the fisherman is 4.30 m/s to the west as he leaves the dock, what is the final velocity of the fisher- man and the boat? 3. Each croquet ball in a set has a mass of 0.50 kg. The green ball, traveling at 12.0 m/s, strikes the blue ball, which is at rest. Assuming that the balls slide on a frictionless surface and all collisions are head-on, find the final speed of the blue ball in each of the following situations: a. The green…arrow_forwardThe 5.15 A current through a 1.50 H inductor is dissipated by a 2.15 Q resistor in a circuit like that in the figure below with the switch in position 2. 0.632/ C A L (a) 0.368/ 0+ 0 = L/R 2T 3r 4 (b) (a) What is the initial energy (in J) in the inductor? 0 t = L/R 2t (c) Эт 4t 19.89 ] (b) How long will it take (in s) the current to decline to 5.00% of its initial value? 2.09 S (c) Calculate the average power (in W) dissipated, and compare it with the initial power dissipated by the resistor. 28.5 1.96 x W X (ratio of initial power to average power)arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





