(a)
The expression for the two forces in unit vector notation.
(a)
Answer to Problem 45AP
The expression for the first force in unit vector notation is
Explanation of Solution
The mass of an object is
Write the formula to calculate the expression for the first force in unit vector notation is
Here,
Write the formula to calculate the expression for the second force in unit vector notation
Here,
Conclusion:
Substitute
Substitute
Therefore, the expression for the first force in unit vector notation is
(b)
The total force exerted on the object.
(b)
Answer to Problem 45AP
The total force exerted on the object is
Explanation of Solution
Write the formula to calculate the total force exerted on the object
Here,
Conclusion:
Substitute
Therefore, the total force exerted on the object is
(c)
The acceleration on the object.
(c)
Answer to Problem 45AP
The acceleration on the object is
Explanation of Solution
Write the formula to calculate the acceleration of the object
Here,
Conclusion:
Substitute
Therefore, the acceleration on the object is
(d)
The velocity on the object.
(d)
Answer to Problem 45AP
The velocity on the object is
Explanation of Solution
Write the formula to calculate the velocity of the object at
Here,
Conclusion:
Substitute
Therefore, the velocity on the object is
(e)
The position on the object.
(e)
Answer to Problem 45AP
The position on the object is
Explanation of Solution
Write the formula to calculate the position of the object
Here,
Substitute
Conclusion:
Therefore, the position on the object is
(f)
The kinetic energy of the object from the formula
(f)
Answer to Problem 45AP
The kinetic energy of the object from the formula
Explanation of Solution
Write the formula to calculate the magnitude of the final velocity of the object
Here,
Substitute
Write the formula to calculate the kinetic energy of the object
Conclusion:
Substitute
Therefore, the kinetic energy of the object from the formula
(g)
The kinetic energy of the object from the formula
(g)
Answer to Problem 45AP
The kinetic energy of the object from the formula
Explanation of Solution
Write the formula to calculate the magnitude of the initial velocity of the object
Here,
Substitute
Write the formula to calculate the final kinetic energy of the object
Conclusion:
Substitute
Therefore, the kinetic energy of the object from the formula
(h)
The conclusion by comparing the answer of part (f) and (g).
(h)
Explanation of Solution
Newton gave the law for the constant acceleration motion while the work energy theorem relates the work done by the object to its energy.
In part (f) the kinetic energy of the object is calculated with the help of Newton’s law while the kinetic energy in part (g) is calculated by the work energy theorem. Since in both the parts the kinetic energy of the object comes out to be same that conclude both the law and theorem are relevant to each other. The work energy theorem is consistent with the Newton’s law.
Conclusion:
Therefore, the work energy theorem is consistent with the Newton’s law of equation.
Want to see more full solutions like this?
Chapter 7 Solutions
Bundle: Physics for Scientists and Engineers, Volume 2, Loose-leaf Version, 10th + WebAssign Printed Access Card, Single-Term
- In a scene from The Avengers (the first one) Black Widow is boosted directly upwards by Captain America, where she then grabs on to a Chitauri speeder that is 15.0 feet above her and hangs on. She is in the air for 1.04 s. A) With what initial velocity was Black Widow launched? 1 m = 3.28 ft B) What was Black Widow’s velocity just before she grabbed the speeder? Assume upwards is the positive direction.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forwardA) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 marrow_forward
- Two objects get pushed by the same magnitude of force. One object is 10x more massive. How does the rate of change of momentum for the more massive object compare with the less massive one? Please be able to explain why in terms of a quantitative statement found in the chapter.arrow_forwardA box is dropped on a level conveyor belt that is moving at 4.5 m/s in the +x direction in a shipping facility. The box/belt friction coefficient is 0.15. For what duration will the box slide on the belt? In which direction does the friction force act on the box? How far will the box have moved horizontally by the time it stops sliding along the belt?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning