EBK NUMERICAL METHODS FOR ENGINEERS
EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 8220100254147
Author: Chapra
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 7, Problem 3P

(a)

To determine

To calculate: The positive real root of f(x) by using Müller’s method if,

f(x)=x3+x24x4

(a)

Expert Solution
Check Mark

Answer to Problem 3P

Solution:

The positive real root of the given equation f(x) is 2.

Explanation of Solution

Given Information:

The given equation is,

f(x)=x3+x24x4

Use Müller’s method.

Formula used:

The expression for the new roots is,

x3=x2+2cb+b24ac

The expression for the error is,

error=| x3x2x3 |100

Calculation:

Recall the equation mentioned in the problem,

f(x)=x3+x24x4

Draw the plot of the equation.

EBK NUMERICAL METHODS FOR ENGINEERS, Chapter 7, Problem 3P , additional homework tip  1

From the above plot it is clear that one root is at about x=2.

Consider the initial guess be x0=1x1=1.5

, and x2=2.5 respectively to determine the positive real root of the equation.

f(x)=x3+x24x4

Thus, the values of f(x) at different initial value are,

f(1)=6 f(1.5)=4.375  f(2.5)=7.875

Now calculate the h0 and h1.

h0=x1x0 h1=x2x1

Substituting the value of x0=1x1=1.5

, and x2=2.5.

h0=0.5h1=1

Now calculate the δ0 and  δ1.

δ0=f(x1)f(x0)x1x0 δ1=f(x2)f(x1)x2x1

Substitute the above calculated values.

δ0=f(1.5)f(1)1.51 =4.375+60.5 =3.25

And,

δ1=f(2.5)f(1.5)2.51.5 =7.875+4.3751 =12.25

Calculate the value of constants a,b and c.

a=δ1δ0h1+h0 =12.253.251+0.5 =9.01.5 =6

For b,

b=ah1+δ1 =6×1+12.5=18.25

For c,

c=f(x2)=7.875

Thus, the new root is calculated as follows.

x3=x2+2cb+b24ac

Substitute the all values.

x3=2.5+2×(7.875)18.25+18.252(4)(6)(7.875) =2.50.520616=1.979384

Calculate the error estimate.

error=| 1.9793842.51.979384 |(100)=| 0.5206162 |(100)=26.03%

Because the error is large, so required new guesses for x0 is replaced by x1

, x1 is replaced by x2

, and x2 is replaced by x3.

Therefore, for the new iteration, x0=1.5

, x1=2.5

, x2=1.98.

Thus, the values of f(x) at different initial value are,

f(1.5)=4.375 f(2.5)=7.875 f(1.98)=0.23721

Now calculate the h0 and h1.

h0=x1x0 h1=x2x1

Substituting the value of x0=1.5x1=2.5

, and x2=1.98.

h0=1h1=0.52

Now calculate the δ0 and  δ1.

δ0=f(x1)f(x0)x1x0 δ1=f(x2)f(x1)x2x1

Substitute the above calculated values.

δ0=f(2.5)f(1.5)2.51.5 =7.875+4.3751 =12.25

And,

δ1=f(1.98)f(2.5)1.982.5 =0.237217.8750.52 =15.60

Calculate the value of constants a,b and c.

a=δ1δ0h1+h0 =15.6012.250.52+1 =3.350.48 =6.98

For b,

b=ah1+δ1 =6×(0.52)+15.60=12.48

For c,

c=f(x2)=0.23721

Thus, the new root is calculated as follows.

x3=x2+2cb+b24ac

Substitute the all values.

x3=1.98+2×(0.23721)12.78+12.482(4)(6.98)(0.23721) =1.98+0.037=2.017

Calculate the error estimate.

error=| 2.0171.9793842.017 |(100)=| 0.0372.017 |(100)=1.8%

Because the error is near about 1, so required new guesses for x0 is replaced by x1

, x1 is replaced by x2

, and x2 is replaced by x3

. And repeat the same process will get the root is 2.

i x3 error
0 1.979384 26.03
1 2.017 1.8
2 2 0.00241

Similarly repeat for all other roots.

To find the exact positive real root use MATLAB.

Write the following code in command window.

>> a=[1 1 -4 -4];

roots(a)

ans =

2.0000

-2.0000

-1.0000

Therefore, the only positive real root of the given equation f(x) is 2.

(b)

To determine

To calculate: The positive real root of f(x) by using Müller’s method if,

f(x)=x30.5x2+4x2

(b)

Expert Solution
Check Mark

Answer to Problem 3P

Solution:

The only positive real root of the given equation f(x) is 0.5.

Explanation of Solution

Given Information:

The given equation is,

f(x)=x30.5x2+4x2

Use Müller’s method.

Formula used:

The expression for the new roots is,

x3=x2+2cb+b24ac

The expression for the error is,

error=| x3x2x3 |100

Calculation:

Recall the equation mentioned in the problem,

f(x)=x3+x24x4

Draw the plot of the equation.

EBK NUMERICAL METHODS FOR ENGINEERS, Chapter 7, Problem 3P , additional homework tip  2

From the above plot it is clear that one root is at about x=0.5.

Consider the initial guess be x0=0.5x1=1

, and x2=1.5 respectively to determine the positive real root of the equation.

f(x)=x3+x24x4

Thus, the values of f(x) at different initial value are,

f(0.5)=0 f(1)=2.5 f(1.5)=6.25

Now calculate the h0 and h1.

h0=x1x0 h1=x2x1

Substituting the value of x0=0.5x1=1

, and x2=1.5.

h0=0.5h1=0.5

Now calculate the δ0 and  δ1.

δ0=f(x1)f(x0)x1x0 δ1=f(x2)f(x1)x2x1

Substitute the above calculated values.

δ0=f(0.5)f(1)0.51 =02.50.5 =5

And,

δ1=f(1.5)f(1)1.51 =6.25+2.50.5 =7.5

Calculate the value of constants a,b and c.

a=δ1δ0h1+h0 =7.550.5+0.5 =2.51.0 =2.5

For b,

b=ah1+δ1 =2.5(0.5)+7.5=8.75

For c,

c=f(x2)=6.25

Thus, the new root is calculated as follows.

x3=x2+2cb+b24ac

Substitute the all values.

x3=1.5+2×(6.25)8.75+8.752(4)(2.5)(6.25) =1.51.0=0.5

Calculate the error estimate.

error=| 0.51.50.5 |(100)=| 1.00.5 |(100)=200%

Because the error is large, so required new guesses for x0 is replaced by x1

, x1 is replaced by x2

, and x2 is replaced by x3.

Therefore, for the new iteration, x0=1

, x1=1.5

, x2=0.5.

Thus, the values of f(x) at different initial value are,

f(1)=2.5 f(1.5)=6.25f(0.5)=0

Now calculate the h0 and h1.

h0=x1x0 h1=x2x1

Substituting the value of x0=1

, x1=1.5

, x2=0.5.

h0=0.5h1=1

Now calculate the δ0 and  δ1.

δ0=f(x1)f(x0)x1x0 δ1=f(x2)f(x1)x2x1

Substitute the above calculated values.

δ0=f(1)f(1.5)11.5 =6.252.50.5 =7.5

And,

δ1=f(0.5)f(1.5)0.51.5 =06.251.0 =6.25

Calculate the value of constants a,b and c.

a=δ1δ0h1+h0 =6.257.51.0+0.5 =2.50.5 =2.5

For b,

b=ah1+δ1 =2.5(1)+6.25=3.75

For c,

c=f(x2)=0

Thus, the new root is calculated as follows.

x3=x2+2cb+b24ac

Substitute the all values.

x3=0.5+2×(0)3.75+3.752(4)(2.5)(0) =0.50=0.5

Calculate the error estimate.

error=| 0.50.50.5 |(100)=0%

Because the error is zero, the root is 0.5.

i x3 error
0 0.5 200%
1 0.5 0%

Similarly repeat for all other roots.

To find the exact positive real root use MATLAB.

Write the following code in command window.

>> a=[1 -0.5 4 -2];

roots(a)

ans =

-0.0000 + 2.0000i

-0.0000 - 2.0000i

0.5000 + 0.0000i

Therefore, the only positive real root of the given equation f(x) is 0.5.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Assignment 10, Question 3, Problem Book #198 Problem Statement Consider a Brayton cycle with a regenerator. The regenerator has an effectiveness of 75%. The compressor inlet conditions are 1.2 bar and 300 K and the mass flowrate is 4.5 kg/s. The compressor outlet pressure is 9 bar. Both the compressor and turbine consist of a single isentropic stage. What minimum power output must be achieved before the regenerator begins to have a benefit? Use an air-standard analysis. Answer Table Correct Answer Stage Description Your Answer Due Date Grade (%) Part Weight Attempt Action/Message Туре 1 Power output (MW) Dec 5, 2024 11:59 pm 0.0 1 1/5 Submit * Correct answers will only show after due date has passed.
Q-3 Consider an engine operating on the ideal Diesel cycle with air as the working fluid. The volume of the cylinder is 1200 cm³ at the beginning of the Compression process, 75 cm³ at the end, and 150 cm³ after the heat addition process. Air is at 17°c and lookpa at the beginning of the compression proc ess. Determine @ The pressure at the beginning of the heat rejection process. the net work per cycle in kjⒸthe mean effective pressur. Answers @264.3 KN/m² ②0.784 kj or 544-6 kj © 697 KN 19 2 m
In the system shown in the (img 1), water flows through the pump at a rate of 50L/s. The permissible NPSH providedby the manufacturer with that flow is 3.6 m. Determine the maximum height Delta z above the water surface at which the Pump can be installed to operate without cavitation. Include all losses in the suction tube. What is the value of the smaller total losses? What is the value of minor-minor losses? What is the value of major-minor losses?
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Limits and Continuity; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=9brk313DjV8;License: Standard YouTube License, CC-BY