Concept explainers
(a) Suppose a constant force acts on an object. The force does not vary with time or with the position or the velocity of the object. Start with the general definition for work done by a force
and show that the force is conservative. (b) As a special case, suppose the force
(a)

That the constant force act on the object is conservative.
Answer to Problem 32P
The constant force applied on the object is conservative in nature.
Explanation of Solution
The work done by a conservative force on a particle moving between any two points is independent of the path taken by the particle. Its only depends upon the end points of the path taken by the particle to move.
The general definition for work done by a force
Write the formula to calculate the work done by the force on the object
Here,
Since the force is constant that does not vary with respect to time or the position or the velocity of the object. So, the value of force can be taken out from the integration since it is constant quantity.
Now, here the force is constant so, the work done by this force on the object in only depends upon the end points of the displace object that shows the work done is independent of the path taken by the object to displace between the end points. But the work done is independent of the path only when the force is conservative.
Conclusion:
Therefore, the constant force applied on the object is conservative in nature.
(b)

The work done by the force
Answer to Problem 32P
The work done by the force
Explanation of Solution
The given force is
The force acting on the particle is
Figure (I)
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Taking the limits of the integration,
In the path
Write the formula to calculate the work done by the force on the particle
Substitute
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the purple path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle
Substitute
In the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the red path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
The path
Taking the limits on integration,
Since the work done by the force
Conclusion:
Therefore, the work done by the force on the particle as it goes from O to C along the blue path is
(c)

Whether the work done by the force
Answer to Problem 32P
The work done by the force
Explanation of Solution
The force acting on the particle is
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle
Substitute
In the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the purple path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle
Substitute
In the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the red path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
The path
Taking the limits on integration,
Since the work done by the force
Conclusion:
Therefore, the work done by the force on the particle as it goes from O to C along the blue path is
(d)

Whether the work done by the force
Answer to Problem 32P
The work done by the force
Explanation of Solution
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
In the path
Substitute
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the purple path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
In the path
Substitute
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the red path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
The path
Substitute
Taking the limits on integration,
Conclusion:
Therefore, the work done by the force on the particle as it goes along the three paths is not same.
Want to see more full solutions like this?
Chapter 7 Solutions
PHYSICS FOR SCI. & ENGR(LL W/WEBASSIGN)
- You are standing a distance x = 1.75 m away from this mirror. The object you are looking at is y = 0.29 m from the mirror. The angle of incidence is θ = 30°. What is the exact distance from you to the image?arrow_forwardFor each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank youarrow_forwardA planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).arrow_forward
- What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V) ammeter I =arrow_forwardsimple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forward
- An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forwardA long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





