Concept explainers
(a) Suppose a constant force acts on an object. The force does not vary with time or with the position or the velocity of the object. Start with the general definition for work done by a force
and show that the force is conservative. (b) As a special case, suppose the force
(a)

That the constant force act on the object is conservative.
Answer to Problem 32P
The constant force applied on the object is conservative in nature.
Explanation of Solution
The work done by a conservative force on a particle moving between any two points is independent of the path taken by the particle. Its only depends upon the end points of the path taken by the particle to move.
The general definition for work done by a force
Write the formula to calculate the work done by the force on the object
Here,
Since the force is constant that does not vary with respect to time or the position or the velocity of the object. So, the value of force can be taken out from the integration since it is constant quantity.
Now, here the force is constant so, the work done by this force on the object in only depends upon the end points of the displace object that shows the work done is independent of the path taken by the object to displace between the end points. But the work done is independent of the path only when the force is conservative.
Conclusion:
Therefore, the constant force applied on the object is conservative in nature.
(b)

The work done by the force
Answer to Problem 32P
The work done by the force
Explanation of Solution
The given force is
The force acting on the particle is
Figure (I)
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Taking the limits of the integration,
In the path
Write the formula to calculate the work done by the force on the particle
Substitute
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the purple path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle
Substitute
In the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the red path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
The path
Taking the limits on integration,
Since the work done by the force
Conclusion:
Therefore, the work done by the force on the particle as it goes from O to C along the blue path is
(c)

Whether the work done by the force
Answer to Problem 32P
The work done by the force
Explanation of Solution
The force acting on the particle is
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle
Substitute
In the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the purple path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle
Substitute
In the path
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the red path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
The path
Taking the limits on integration,
Since the work done by the force
Conclusion:
Therefore, the work done by the force on the particle as it goes from O to C along the blue path is
(d)

Whether the work done by the force
Answer to Problem 32P
The work done by the force
Explanation of Solution
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
In the path
Substitute
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the purple path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
Since along the path
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
In the path
Substitute
Taking the limits of the integration,
Write the formula to calculate the work done by the force on the particle along the red path
Here,
Substitute
Write the formula to calculate the work done by the force on the particle
Substitute
The path
Substitute
Taking the limits on integration,
Conclusion:
Therefore, the work done by the force on the particle as it goes along the three paths is not same.
Want to see more full solutions like this?
Chapter 7 Solutions
PHYSICS:F/SCI.+ENGRS.(LL)-W/SINGLE CARD
- Small ice cubes, each of mass 5.60 g, slide down a frictionless track in a steady stream, as shown in the figure below. Starting from rest, each cube moves down through a net vertical distance of h = 1.50 m and leaves the bottom end of the track at an angle of 40.0° above the horizontal. At the highest point of its subsequent trajectory, the cube strikes a vertical wall and rebounds with half the speed it had upon impact. If 10 cubes strike the wall per second, what average force is exerted upon the wall? N ---direction--- ▾ ---direction--- to the top to the bottom to the left to the right 1.50 m 40.0°arrow_forwardThe magnitude of the net force exerted in the x direction on a 3.00-kg particle varies in time as shown in the figure below. F(N) 4 3 A 2 t(s) 1 2 3 45 (a) Find the impulse of the force over the 5.00-s time interval. == N⚫s (b) Find the final velocity the particle attains if it is originally at rest. m/s (c) Find its final velocity if its original velocity is -3.50 î m/s. V₁ m/s (d) Find the average force exerted on the particle for the time interval between 0 and 5.00 s. = avg Narrow_forward••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forward
- Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.arrow_forwardIf the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forwardIn the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forward
- The car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forwardA roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forward
- This one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forwardConsider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





