
(a)
To determine: The speed of the sky diver when he lands on the ground.
(a)

Answer to Problem 24P
Answer: The speed of the sky diver when he lands on the ground is
Explanation of Solution
Explanation:
Given information:
An
Formula to calculate the speed of the sky diver by conservation of energy is,
The initial kinetic energy of the sky diver is zero because sky diver is initially at rest and final potential energy of the sky diver is zero because the distance is zero.
Formula to calculate the potential energy of the sky diver before jump is,
Formula to calculate the total mechanical energy of the system is,
Formula to calculate the kinetic energy of the sky diver when he lands on ground is,
Substitute
The force
Substitute
Conclusion:
Therefore, the speed of the sky diver when he lands on the ground is
(b)
To explain: Whether the sky diver will be injured or not.
(b)

Answer to Problem 24P
Answer: Therefore, the sky diver will be injured because his speed is very high.
Explanation of Solution
Explanation:
Given information:
An
Yes, the sky diver will be injured because speed of the sky diver is covered the distance approx
Conclusion:
Therefore, the sky diver will be injured because his speed is very high.
(c)
To determine: The height at which parachute should be open if the final speed of the sky diver when he hits the ground is
(c)

Answer to Problem 24P
Answer: The height parachute should be open is
Explanation of Solution
Explanation:
Given information:
An
From equation (II),
Assume
Substitute
Conclusion:
Therefore, height parachute should be open is
(d)
To determine: The assumption that the total retarding force is constant.
(d)

Answer to Problem 24P
Answer: Therefore, as the density of air changes with the altitude therefore, the assumption that the retarding force is constant is not realistic.
Explanation of Solution
Explanation:
Given information:
An
The assumption that total retarding force is constant is not realistic because the air density changes with the change in altitude. Retarding force is proportional to the density of the air so, with the change in the density of air, the retarding force also changes with the altitude.
Conclusion:
Therefore, as the density of air changes with the altitude therefore, the assumption that the retarding force is constant is not realistic.
Want to see more full solutions like this?
Chapter 7 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Calculate the center of mass of the hollow cone shown below. Clearly specify the origin and the coordinate system you are using. Z r Y h Xarrow_forward12. If all three collisions in the figure below are totally inelastic, which will cause more damage? (think about which collision has a larger amount of kinetic energy dissipated/lost to the environment? I m II III A. I B. II C. III m m v brick wall ע ע 0.5v 2v 0.5m D. I and II E. II and III F. I and III G. I, II and III (all of them) 2marrow_forwardCan you solve this 2 question teach me step by step and draw for mearrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





